LHCb VErtex LOcator Upgrade

Else Okkinga

Else Okkinga

LHCb experiment

- Goal: Study of the beauty quark
- Physics: Flavour physics CP and in B mesons
- Matter antimatter asymmetry
 - New Physics
- Detection in the forward direction -> Low p_T particles

Figure 1: The basic layout of the LHCb detector. The interaction point is on the left [4].

Goal of the VELO

Determining the IP to distinguish between prompt and non-prompt interactions

Improve Impact Parameter (IP) resolution

Software trigger op de IP

- Pixel Sensors --CTB IP

Figure 2: Sketch of B meson coming from the primary vertex (PV) and decaying inside the LHCb Vertex Locator into two daughter particles at the secondary vertex (SV) [5].

Else Okkinga

Impact parameter: Distance between the primary pp collision and a secundair decay of a particle

Goal of the VELO

B mesons originated from collision

Else Okkinga

Goal of the VELO

B mesons decay into daughter particles

Else Okkinga

Goal of the VELO

Particles propagate the detector

Else Okkinga

Goal of the VELO

What the VELO measures:

27-03-2024

Goal of the VELO

Reconstructing tracks from the particles

Else Okkinga

LHCS VErtex LOcator (VELO)

Goal of the VELO

Identifying primary and secondary vertices

Else Okkinga

LHCS VErtex LOcator (VELO)

Goal of the VELO

Impact parameter:

Else Okkinga

Figure 4: Artist's impression of the upgraded VELO once installed [3].

What is the VELO upgrade?

- The VELO is a silicon vertex detector
- Pixel sensors in stead of strips
- > 26 stations over 1 m length
 - 52 Modules

27-03-2024

66 mm

Figure 6: Schematic layout of the VELO upgrade [6].

Secundair vacuum

- The VELO is placed in a secondair vacuum
 - Separated from the beam vacuum by RF foil
 - VERY THIN!~aluminum foil

Front view

Back view

Figure 7: Front and rear side of a module containing two 3 × 1 tiles on either side

Pixel sensors

- Each module has 4 sensors
- Each sensor is bump-bonded to three VeloPix ASICs -> this is a tile
- Four tiles form an "L" shape, two sensors on each side of the module

LHCS VELO Module

Else Okkinga

Pixel sensors

- New VeloPix ASIC for readout
- ▶ 55 µm x 55 µm pixels
- > High granularity -> good position resolution

LHCD

Impact parameter resolution

Detector quantities to improve the IP resolution

 $\sigma_{
m IP}^2 ~=~ rac{r_1^2}{p_{
m T}{}^2}$

- Position resolution
- Material budget
- Distance of interaction point and first measured point

$$\frac{1}{2} \left(0.0136 \text{ GeV}/c \sqrt{\frac{x}{X_0}} \left(1 + 0.038 \ln\left(\frac{x}{X_0}\right) \right) \right)^2 + \frac{\Delta_{02}^2 \sigma_1^2 + \Delta_{01}^2}{\Delta_{12}^2}$$

Impact parameter resolution

Figure 8: breakdown of the total material of the VELO upgrade by component. The largest contribution comes from the RF foil [7].

Material budget

- To reduce multiple scattering
- Biggest contribution is the RF foil

Figure 9: Picture of the RF foil [2]

27-03-2024

Impact parameter resolution

First measurement point

- \geq Improving IP resolution -> first detection point as close as possible to the interaction point
- > 5 mm from beam pipe
- Movement mechanism -> two retractable halves

Figure 10: Two retractable halves of the VELO [7].

Impact parameter resolution

Results

IP resolution of VELO (black) versus the VELO upgrade (red)

Figure 11: The x resolution of the IP. The current VELO is shown with black circles and the upgrade VELO with red squares, $\sqrt{s} = 14$ TeV. The resolutions in x and y are similar. Grey histogram shows the relative population of b-hadron daughter tracks in each $1/p_{T}$ bin [3].

Primary vertex location

Figure 12: The difference between the true and reconstructed PV position in x and z is shown. The current VELO is shown with black circles and the upgrade VELO 0.4 with red squares. The

Thank you!

References

- CERN photos:
 - [1] LHCb Upgrade 2018 Beam test North Area in Prévessin (bldg 887) [online]: <u>https://cds.cern.ch/record/2644707</u>
 - [2] LHCb VELO in the clean room [online]: <u>https://cds.cern.ch/record/2801027</u>
- ▶ [3] TDR
- <u>harvest-of-rare-beauty/</u>
- Vertex_fig2_335860361 [accessed 22 Mar, 2024]
- 2023
- record/2630580/files/decapua_VELOupgrade 07.07.pdf

> [4] LHCb prepares for a RICH harvest of rare beauty, CERNCOURIER [online]: https://cerncourier.com/a/lhcb-prepares-for-a-rich-

> [5] New approaches for track reconstruction in LHCb's Vertex Locator - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Sketch-of-B-meson-coming-from-the-primary-vertex-PV-and-decaying-inside-the-LHCb-

> [6] The LHCb VELO detector: design, operation and first results, Efrén Rodríguez Rodríguez on behalf of the LHCb VELO group,

[7] The LHCb VELO Upgrade, Stefano de Capua on behalf of the LHCb VELO group, 2018 [online]: https://cds.cern.ch/

