

LHCb experiment

- Goal: Study of the beauty quark
- Physics: Flavour physics CP and in B mesons
> Matter - antimatter asymmetry
> New Physics
- Detection in the forward direction $->$ Low P_{T} particles

Figure 1: The basic layout of the LHCb detector. The interaction point is on the left [4].

umbeb
 VErtex LOcator (VELO)

Goal of the VELO

>Determining the IP to distinguish between prompt and non-prompt interactions
>Improve Impact Parameter (IP) resolution
>Software trigger op de IP

Figure 2: Sketch of B meson coming from the primary vertex (PV) and decaying inside the LHCb Vertex Locator into two daughter particles at the secondary vertex (SV) [5].
-Impact parameter: Distance between the primary pp collision and a secundair decay of a particle

Figure 3: Signature of B decay products from a $B^{+} \rightarrow J / \psi K^{+}$candidate event in LHCb data [3]

 VErtex LOcator (VELO)

Goal of the VELO

B mesons originated from collision

LHCh
 VErtex LOcator (VELO)

Goal of the VELO

B mesons decay into daughter particles

KH⿰亻⿻乚㇒⿴囗⿱一一儿口
 VErtex LOcator（VELO）

Goal of the VELO

Particles propagate the detector

VErtex LOcator (VELO)

Goal of the VELO

What the VELO measures:

KH⿰亻⿻乚㇒⿴囗⿱一一儿口
 VErtex LOcator（VELO）

Goal of the VELO

Reconstructing tracks from the particles

Lith
 VErtex LOcator (VELO)

Goal of the VELO

Identifying primary and secondary vertices

냉
 VErtex LOcator (VELO)

Goal of the VELO

Impact parameter:

LHCh
 VErtex LOcator (VELO)

Goal of the VELO

But now for many collisions!

umb
 VErtex LOcator (VELO)

Figure 5: Schematic layout of the upgraded VELO [3].

LHCh
 VErtex LOcator (VELO)

Secundair vacuum

\Rightarrow The VELO is placed in a secondair vacuum
> Separated from the beam vacuum by RF foil
> VERY THIN! ~aluminum foil

Figure 6: Schematic layout of the VELO upgrade [6].

VELO Module

Front view

Back view

LHCh VELO Module

Pixel sensors

> New VeloPix ASIC for readout
> $55 \mu \mathrm{~m} \times 55 \mu \mathrm{~m}$ pixels
$>$ High granularity $->$ good position resolution

Impact parameter resolution

Detector quantities to improve the IP resolution

$$
\sigma_{\mathrm{IP}}^{2}=\frac{r_{1}^{2}}{p_{\mathrm{T}}}\left(0.0136 \mathrm{GeV} / c \sqrt{\frac{x}{X_{0}}}\left(1+0.038 \ln \left(\frac{x}{X_{0}}\right)\right)\right)^{2}+\frac{\Delta_{02}^{2} \sigma_{1}^{2}+\Delta_{01}^{2} \sigma_{2}^{2}}{\Delta_{12}^{2}}
$$

- Position resolution
- Material budget
- Distance of interaction point and first measured point

Impact parameter resolution

Figure 8: breakdown of the total material of the VELO upgrade by component. The largest contribution comes from the RF foil [7].

Material budget

- To reduce multiple scattering
\Rightarrow Biggest contribution is the RF foil

Figure 9: Picture of the RF foil [2]

Impact parameter resolution

First measurement point

> Improving IP resolution $->$ first detection point as close as possible to the interaction point
> 5 mm from beam pipe

- Movement mechanism $->$ two retractable halves

Figure 10: Two retractable halves of the VELO [7].

Impact parameter resolution

Results

- IP resolution of VELO (black) versus the VELO upgrade (red)

LHCb
 Performance

Primary vertex location

Figure 12: The difference between the true and reconstructed PV position in x and z is shown. The current VELO is shown with black circles and the upgrade VELO with red squares. The
resolutions in x and y are similar [3].

Thank you!

References

- CERN photos:
- [1] LHCb Upgrade 2018

Beam test North Area in Prévessin (bldg 887) [online]: https://cds.cern.ch/record/2644707
> [2] LHCb VELO in the clean room [online]: https://cds.cern.ch/record/2801027
> [3] TDR
> [4] LHCb prepares for a RICH harvest of rare beauty, CERNCOURIER [online]: https://cerncourier.com/a/lhcb-prepares-for-a-rich-harvest-of-rare-beauty/
$>$ [5] New approaches for track reconstruction in LHCb's Vertex Locator - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Sketch-of-B-meson-coming-from-the-primary-vertex-PV-and-decaying-inside-the-LHCbVertex_fig2_335860361 [accessed 22 Mar, 2024]
> [6] The LHCb VELO detector: design, operation and first results, Efrén Rodríguez Rodríguez on behalf of the LHCb VELO group, 2023
> [7] The LHCb VELO Upgrade, Stefano de Capua on behalf of the LHCb VELO group, 2018 [online]: https://cds.cern.ch/ record/2630580/files/decapua_VELOupgrade 07.07.pdf

