

Else Okkinga

27-03-2024

LHCb experiment

- > Goal: Study of the beauty quark
- Physics: Flavour physics CP and in B mesons
 - Matter antimatter asymmetry
 - New Physics

Detection in the forward direction —> Low p_T

particles

Figure 1: The basic layout of the LHCb detector. The interaction point is on the left [4].

Else Okkinga 27-03-2024

Goal of the VELO

- Determining the IP to distinguish between prompt and non-prompt interactions
 - >Improve Impact Parameter (IP) resolution
 - ►Software trigger op de IP

Figure 2: Sketch of B meson coming from the primary vertex (PV) and decaying inside the LHCb Vertex Locator into two daughter particles at the secondary vertex (SV) [5].

Impact parameter: Distance between the primary pp collision and a secundair decay of a particle

Figure 3: Signature of B decay products from a B+ → J/ψK+ candidate event in LHCb data [3].

Else Okkinga 27-03-2024 3

Goal of the VELO

B mesons originated from collision

Goal of the VELO

B mesons decay into daughter particles

Goal of the VELO

Goal of the VELO

What the VELO measures:

LHCS VErtex LOcator (VELO)

Goal of the VELO

LHCS VErtex LOcator (VELO)

Goal of the VELO

LHCS VErtex LOcator (VELO)

Goal of the VELO

Else Okkinga 27-03-2024 10

Goal of the VELO

NI DE EN

What is the VELO upgrade?

- The VELO is a silicon vertex detector
- Pixel sensors in stead of strips
- > 26 stations over 1 m length
- > 52 Modules

Figure 4: Artist's impression of the upgraded VELO once installed [3].

Figure 5: Schematic layout of the upgraded VELO [3].

Else Okkinga 27-03-2024 12

Secundair vacuum

- The VELO is placed in a secondair vacuum
 - Separated from the beam vacuum by RF foil
 - VERY THIN!~aluminum foil

Figure 6: Schematic layout of the VELO upgrade [6].

VELO Module

Figure 7: Front and rear side of a module containing two 3 × 1 tiles on either side

Pixel sensors

- Each module has 4 sensors
- ► Each sensor is bump-bonded to three VeloPix ASICs —> this is a tile
- Four tiles form an "L" shape, two sensors on each side of the module

Pixel sensors

- New VeloPix ASIC for readout
- > 55 µm x 55 µm pixels
- ➤ High granularity —> good position resolution

Detector quantities to improve the IP resolution

$$\sigma_{\text{IP}}^2 = \frac{r_1^2}{p_{\text{T}}^2} \left(0.0136 \text{ GeV/} c \sqrt{\frac{x}{X_0}} \left(1 + 0.038 \ln(\frac{x}{X_0}) \right) \right)^2 + \frac{\Delta_{02}^2 \sigma_1^2 + \Delta_{01}^2 \sigma_2^2}{\Delta_{12}^2}$$

- Position resolution
- Material budget
- Distance of interaction point and first measured point

Figure 8: breakdown of the total material of the VELO upgrade by component. The largest contribution comes from the RF foil [7].

Material budget

- > To reduce multiple scattering
- Biggest contribution is the RF foil

Figure 9: Picture of the RF foil [2]

Else Okkinga 27-03-2024 17

First measurement point

- Improving IP resolution —> first detection point as close as possible to the interaction point
- > 5 mm from beam pipe
- Movement mechanism
 -> two retractable halves

Figure 10: Two retractable halves of the VELO [7].

Results

➤ IP resolution of VELO (black) versus the VELO upgrade (red)

Figure 11: The x resolution of the IP. The current VELO is shown with black circles and the upgrade VELO with red squares, $\sqrt{s} = 14$ TeV. The resolutions in x and y are similar. Grey histogram shows the relative population of b-hadron daughter tracks in each $1/p_{\scriptscriptstyle T}$ bin [3].

Performance

Primary vertex location

Figure 12: The difference between the true and reconstructed PV position in x and z is shown. The current VELO is shown with black circles and the upgrade VELO with red squares. The resolutions in x and y are similar [3].

Thank you!

References

- CERN photos:
 - ► [1] LHCb Upgrade 2018 Beam test North Area in Prévessin (bldg 887) [online]: https://cds.cern.ch/record/2644707
 - > [2] LHCb VELO in the clean room [online]: https://cds.cern.ch/record/2801027
- ▶ [3] TDR
- > [4] LHCb prepares for a RICH harvest of rare beauty, CERNCOURIER [online]: https://cerncourier.com/a/lhcb-prepares-for-a-rich-harvest-of-rare-beauty/
- > [5] New approaches for track reconstruction in LHCb's Vertex Locator Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Sketch-of-B-meson-coming-from-the-primary-vertex-PV-and-decaying-inside-the-LHCb-Vertex_fig2_335860361 [accessed 22 Mar, 2024]
- > [6] The LHCb VELO detector: design, operation and first results, Efrén Rodríguez Rodríguez on behalf of the LHCb VELO group, 2023
- [7] The LHCb VELO Upgrade, Stefano de Capua on behalf of the LHCb VELO group, 2018 [online]: https://cds.cern.ch/record/2630580/files/decapua_VELOupgrade 07.07.pdf