Particle identification in ALICE with the High Momentum Particle Identification Detector (HMPID)

LIEKE GIJSEN MARCH 2024

ALICE (a Large Ion Collider Experiment)

Investigate the Quark Gluon Plasma (QGP)

ALICE's HMPID

Probe the QGP with high momentum ion measurements

Test perturbative QCD

HE hadronisation

HMPID is a RICH detector

Cherenkov: charged particles faster than speed of light -> medium oscillations

$$\cos\theta_c = \frac{c/n}{\beta c} = \frac{1}{n\beta}$$

Charge from intensity

Mass in combination with tracking detectors

HMPID in the high momentum range

Cherenkov: charged particles faster than speed of light -> medium oscillations

$$\cos\theta_c = \frac{c/n}{\beta c} = \frac{1}{n\beta}$$

Figure 2.35: Single-electron detection efficiency as a function of the single-electron mean PH calculated at different experimental FEE thresholds.

Results from the experiment

2 mrad ring resolution dependent on ring radius: 7 mrad ~100 mm

Future: Very High Momentum Particle Identification Detector (VHMPID)

References

[1] CERN (2020). Alice's dark side, CERN Courier. Available at: [7] Maire, A., & Dobrigkeit Chinellato, D. (2017). ALICE sub-detectors https://cerncourier.com/a/alices-dark-side/ (Accessed: 24 March 2024). highlighted (LHC runs 1+2 // runs 3+4). https://cds.cern.ch/record/2302924 [8] PDG (2019). 35.6.2 Multi-Wire Proportional and Drift Chambers, 35. [2] ALICE Collaboration (2024). CERN accelerating science. Available at: Particle detectors at accelerators. Available at: https://alice-collaboration.web.cern.ch/menu_proj_items/HMPID (Accessed: https://pdg.lbl.gov/2020/reviews/rpp2020-rev-particle-detectors-accel.pdf 24 March 2024). (Accessed: 25 March 2024). [3] Saba, A. (2006). The ALICE HMPID detector with the three project [9] ALICE Collaboration (2003). ALICE HMPID Radiator Vessel. leaders: Paolo Martinengo, Eugenio Nappid and Francois Piuz. https://cds.cern.ch/record/629896 https://cds.cern.ch/record/1045964 [10] Yi, J. (2012). CERN, The VHMPID detector upgrade for ALICE [4] Alaeian, H. (2014). An introduction to cherenkov radiation. Available at: experiment at LHC. Available at: http://large.stanford.edu/courses/2014/ph241/alaeian2/ (Accessed: 22 https://indico.cern.ch/event/178170/contributions/295335/attachments/2337 March 2024). 70/327069/HLT_ATHIC2012.pdf (Accessed: 25 March 2024). [5] ALICE Collaboration (2014). 'Performance of the alice experiment at the CERN LHC', International Journal of Modern Physics A, 29(24), p. 1430044. [11] Volpe, G. (2009). 'Results from cosmics and first LHC beam with the ALICE HMPID detector', Nuclear Physics A, 830(1-4), pp. 539c-542c. doi:10.1142/s0217751x14300440. doi:10.1016/j.nuclphysa.2009.10.048. [6] Beole, S. et al. (1998). Technical design report high momentum particle [12] Volpe, G. (2011). 'VHMPID detector for the Alice Experiment Upgrade identification detector. Available at: https://aliceat LHC', Nuclear Physics B - Proceedings Supplements, 215(1), pp. 222collaboration.web.cern.ch/sites/default/files/Documents/PROJECTS/HMPID/ 224. doi:10.1016/j.nuclphysbps.2011.04.014. HMPID_TDR.pdf (Accessed: 22 March 2024).

ALICE B-field: 0.5 T

Magnetic field parallel to the photocathodes does not affect the electron detection efficiency

Why Csl?

