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Main injector

Fig 3.2 from [1] “The MINOS Detectors Technical Design Report”
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Neutrino oscillation
• A QM Phenomenon that involves the 

conversion of neutrinos between 
different flavors, as it propagates 
through space.
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Neutrino oscillation
• A QM Phenomenon that involves the 

conversion of neutrinos between 
different flavors, as it propagates 
through space.

• It implies that the neutrino has a non-
zero mass.
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Adapted by UCL-Hep group [2]
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Minos:

• To study neutrino oscillations.

• Two detectors: 
- A "near" detector is located at 
Fermilab.
- A "far" detector is located at a 
underground mine (to reduce the 
background).

Adapted by UCL-Hep group [2]
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Fig 3.2 from [1] “The MINOS Detectors Technical Design Report”
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Source

• Neutrino (νμ) beamlines are produced at the 
Fermilab, and guided through two detectors 
(red line).
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Source

• Neutrino (νμ) beamlines are produced at the 
Fermilab, and guided through two detectors 
(red line).

• Two detectors detect the neutrinos
originating from the same neutrino beam.

• The information is obtained by comparing 
the data collected from two detectors.

Fig 3.2 from [1] “The MINOS Detectors Technical Design Report”
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Detecting the neutrino

Scintillators in Neutrino Detection
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Scintillators

• Scintillator is primarily composed of 
plastic: Polystyrene (PS), and doped with 
a small amount of fluorescent (PPO, 
POPOP).
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Scintillators

• Scintillator is primarily composed of 
plastic: Polystyrene (PS), and doped with 
a small amount of fluorescent (PPO, 
POPOP).

• Fibers are embedded into the 
scintillators.

• Fibers are connected to photomultiplier 
tubes (PMTs) or similar photodetectors.
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• Simple and Robust Construction.
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• Simple and Robust Construction.
• Long-Term Stability.
• Low Maintenance and High Reliability.
• Cost-Effectiveness.

Polystrene
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10



Scintillators in Neutrino Detection

• Neutrinos interact with the material of the scintillator..
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Scintillators in Neutrino Detection

• Neutrinos interact with the material of the scintillator..

• Interaction produces secondary particles, e.g. electrons and muons,
etc.

• Particles excite the molecules of the scintillator.

• The excited molecules return to their ground state, emitting photons
in the process.
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• These fibers collect the scintillation light produced by de-excitation.

Near Detector
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• These fibers collect the scintillation light produced by de-excitation.

• Fiber’s material re-emits the light.

• PMTs can detect the light transmitted through the fibers and convert
these light into electrical signals.

Far Detector
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Fig 5.3 from [1] “The MINOS 
Detectors Technical Design Report”

From John Chapman [4] .
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• The steel plate is magnetized, providing a uniform magnetic field throughout 
the detector volume.

Fig 5.3 from [1] “The MINOS 
Detectors Technical Design Report”

From John Chapman [4] .
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• The steel plate is magnetized, providing a uniform magnetic field throughout 
the detector volume.
• When high-energy particles pass through these planes, their trajectories can 

be altered due to interactions with the steel nuclei.

Fig 5.3 from [1] “The MINOS 
Detectors Technical Design Report”

From John Chapman [4] .
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• The steel plate is magnetized, providing a uniform magnetic field throughout 
the detector volume.
• When high-energy particles pass through these planes, their trajectories can 

be altered due to interactions with the steel nuclei.
• Steel also causes particles to lose energy.

Fig 5.3 from [1] “The MINOS 
Detectors Technical Design Report”

From John Chapman [4] .
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Decoding the neutrino 
oscillation:

Charge current and Neutral current 
Events in MINOS
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Adapted from [3] “First Neutrino Oscillation Results from the 
NOvA Experiment ”
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Charged current (CC) interactions:
• Interactions are mediated by the W boson, do 

change charge.

• Neutrinos interact with nuclei and produce the 
corresponding leptons.

• 𝑣! + 𝑛 → 𝜇 + 𝑝

Adapted from [3] “First Neutrino Oscillation Results from the 
NOvA Experiment ”
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Charged current (CC) interactions:
• Interactions are mediated by the W boson, do 

change charge.

• Neutrinos interact with nuclei and produce the 
corresponding leptons.

• 𝑣! + 𝑛 → 𝜇 + 𝑝

Neutral current (NC) interactions:
• Interactions are mediated by the Z boson, do not

change charge.

• NC interactions are not easily observed directly, as 
they do not produce charged leptons

Adapted from [3] “First Neutrino Oscillation Results from the 
NOvA Experiment ”
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X is nucleon
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• 𝑣' beam is first measured by “near” detector
in the Fermilab.

• After few second, this beams is detected and 
measured by “far” detector in the Soudan 
mine.
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Comparing the Far detector and Near detector data：
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Comparing the Far detector and Near detector data：

- If the far detector observes leptons from CC interactions originating 
from neutrinos other than the muon neutrinos (𝑣').

- and a corresponding reduction in 𝑣' CC interactions (far detector).

- The rate of NC events in the far detector should be numerically close to 
the rate in the near detector.
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Conclusion:
• CC interactions provide direct evidence for the conversions of neutrino types.

• NC interactions confirm that the conversions are caused by neutrino oscillations.

• Spatial Resolution is important for reconstructing the paths of charged particles 
produced in neutrino interactions and for identifying the interaction vertices.
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Neutrino energy spectrum:
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Neutrino energy spectrum:
• Mass squared difference (Δm2).
• Mixing angle.
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Energy resolution
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Energy resolution

• Magnetic field. (Improve in Minos+)
• Light attenuation in fibers. (Use two-end readout for Far detector)
• …
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• The MINOS experiment began detecting neutrinos in
February 2005.
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• The MINOS experiment began detecting neutrinos in
February 2005.

• In 2006, the analysis of Minos initial data is consistent
with parameters aligning with those measured by
Super-K.

• MINOS was upgraded to MINOS+, which started
taking data in 2013.

• The experiment was shut down on June 29, 2016.
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