ALICE Inner Tracker System

Robin Kan Particle Detection 20-03-2024

- A Large Ion Collider Experiment
- One of the experiments at the LHC
- Relatively small detector
- Inner Tracker System 2 (ITS2): •
 - Installed in the LHC shutdown 0 from 2019-2021

2

Objectives ALICE

- Recreating and studying the primordial quark-gluon plasma
- Highly energetic Pb-Pb collisions
- The collision of two heavy ions at near-light speed creates a droplet of QGP
- Temperatures up to > 100,000 times hotter than the core of the Sun
- Plasma cools → quarks and gluons recombine and 'ordinary particles' speed away in all directions, which are detected by the detector

Particle Detection

The ITS2

With an active area of ~10 m² and 12.5 billion pixels it is the largest and most granular pixel detector ever built

- Inner Tracker System 2
- Consists of silicon Monolithic Active Pixel Sensors (MAPS)
 - ALPIDE design Ο

Particle Detection

Structure ITS2

- 7 layers in total: 3 in the inner barrel, and 4 in the outer barrel
- The sensors are mounted on staves, which are configured concentrically around the beam axis

Physics objectives ITS2

- I. Highly efficient tracking over an extended momentum range, with special emphasis on very low momenta;
- II. Very precise reconstruction of secondary vertices from charm and beauty hadron decays

Example of 'strangeness tracking'

• Charm is exclusively produced in initial hard scatterings, providing unique insight into the QGP

 $\Omega_{\rm c}^0 \to \Omega^- \pi^+$

 $\to \Omega^{\scriptscriptstyle -}$ points most accurately to the PV

 $\Omega^- \rightarrow K^- + p$

• But Ω^- only has a proper lifetime of 2.5 cm

 \rightarrow ITS2 makes it possible to track Ω^- very close to the primary vertex

Particle Detection

Indicator of whether the particle that was tracked originated from a primary vertex

How to reach objectives ITS2

Improve impact parameter resolution

How?

- \rightarrow getting closer to the IP
- \rightarrow reducing material budget inner layers
- \rightarrow reducing pixel size
- Improve tracking efficiency and resolution at low transverse momentum

How?

- \rightarrow increasing granularity: pixel size and more layers
- III. Fast readout

Increased from 1 kHz to 100 kHz in Pb-Pb collisions

LHC interaction rate of ~50 kHz for Pb-Pb collisions

[3]

Particle Detection

20-03-2024

ALPIDE - the Monolithic Active Pixel Sensor for ITS2

Porticle Detection

- CMOS Monolithic Active Pixel Sensors (MAPS)
 - Integrated read-out electronics
- ALPIDE chip
- Have to be radiation-hard to maintain spatial resolution
 - \circ $\;$ Have to be tolerant against 700 krad of total ionising dose and fluence of 1013 MeV $n_{\rm eq}/cm^2$

Specifications of ALPIDE chips

parameter	value	
chip dimensions	15 mm x 30 mm (rφ x z)	
thickness	50 µm (inner layers)	
spatial resolution	5 μm	
detection efficiency	> 99%	

Information obtained from: [1,8]

8

Conclusion

- ITS2 is innermost detector of the ALICE detector
- Allows us to study the primordial quark-gluon plasma even better by providing greater precision closer to the beam axis
- Consists of Monolithic Active Pixel Sensors with integrated electronics
- To this day the largest and most granular pixel detector

References

- F. Reidt, Upgrade of the ALICE ITS detector, Nucl. Instrum. Methods Phys. Res., A 1032 (2022) 166632, arXiv: 2111.08301, URL: https://cds.cern.ch/record/2790824.
- [2] M. Brice, "Aerial View of the CERN taken in 2008", 2008, URL: https://cds.cern.ch/record/1295244.
- [3] F. Reidt,

ALICE ITS2 - A Monolithic Active Pixel Sensor based Inner Tracking System for ALICE, Slides from 21 Okt 2022, URL: https://indico.cern.ch/event/1210704/.

[4] CERN, ALICE, Accessed at: 18-03-2024,

URL: https://home.cern/science/experiments/alice.

- [5] P. Traczyk, The LHC lead-ion collision run starts, 2023, URL: https: //home.cern/news/news/experiments/lhc-lead-ion-collision-run-starts.
- [6] A. Andronic, QGP, Accessed at: 18-03-2024, URL: http://www-alice.gsi.de/fsp201/qgp.html.
- [7] I. Belikov, Tracking and vertexing in ALICE, Slides from 24 Okt 2018, URL: https://indico.cern.ch/event/710050/contributions/3161650/.
- [8] B. Abelev et al.,

Technical Design Report for the Upgrade of the ALICE Inner Tracking System, tech. rep., 2014, URL: https://cds.cern.ch/record/1625842.

- [9] D. Andreou, Heavy Flavour measurements in Pb-Pb collisions with the upgraded ALICE Inner Tracking System, Acta Phys. Pol. B Proc. Suppl. 14 (2021) 29, arXiv: 2004.14877, URL: https://cds.cern.ch/record/2716694.
- [10] M. Labiche, Inner Tracking System 2 (ITS2) ALICE upgrade, Accessed at: 18-03-2024, URL: https://www.technology.stfc.ac.uk/Pages/Project-Showcase/Inner-Tracking-System-2-%28ITS2%29---ALICE-upgrade%E2%80%AFF.2spx.
- [11] I. Ravasenga, Commissioning and Performance of the New ALICE Inner Tracking System in the First Phase of LHC Run 3, (2023), arXiv: 2302.00432 [physics.ins-det].
- [12] D. Chinellato, Charm and multi-charm baryon measurements via strangeness tracking with the upgraded ALICE detector, EPJ Web of Conferences 259 (2022) 09004.
- [13] J. Baudot, ESIPAP 2016 Module 1 Physics of particle and astroparticle detectors, Presentation material from 06 Feb 2017, URL: https://indico.cern.ch/event/571270/contributions/2311216/ attachments/1411336/2158890/tracking_exam_ESIPAP2016.pdf.
- [14] C. Magliocca, The Transverse Impact Parameter as a Relevant Variable to Study the Adjusted-MC Method in the ATLAS Experiment, DESY Summer Student Programme, 2018, URL: https://www.zeuthen.desy.de/students/2018/Summerstudents2018/ Reports/Magliocca.pdf.
- [15] F. Loddo, Introduction to Front-End Electronics for Particle Detectors, Slides from 15 Jun 2021, URL: https://indico.cern.ch/event/1040996/contributions/4402468/.
- [16] S. Sze and M. Lee, Semiconductor Devices: Physics and Technology, Semiconductor Devices, Physics and Technology, John Wiley & Sons, Inc., 2012, ISBN: 9780470537947.
- [17] P. Riedler, Upgrade of the ALICE Inner Tracking System, Slides from 29 Sept 2015, URL: https://indico.cern.ch/event/355454/contributions/838708/.
- [18] M. Whitford and A. Klimley, An overview of behavioral, physiological, and environmental sensors used in animal biotelemetry and biologging studies, Animal Biotelemetry 7 (2019).

Particle Detection

Robin Kan

Backup

Particle Detection

Robin Kan

20-03-2024

12

Differences ITS and ITS2

Differences ITS and ITS2

Table I. Main technological features of updraded ITS (ITS2) compared to the older ITS (ITS1). The radial positions are the average between the minimum and maximum radii of the innermost layer.

	ITS1	ITS2
Readout rate	up to 1 kHz	> 100 kHz (Pb–Pb)
		> 400 kHz (pp)
Material budget	1.1% X ₀	0.36% X ₀ (Inner Barrel)
		1.1% X_0 (Outer Barrel)
Pixel size	$50 \times 425 \ \mu m^2$	$27 \times 29 \mu \text{m}^2$
Pointing resolution ($p_{\rm T} = 500 \text{ MeV}/c$)	$\sim 240 \mu m(z)$	$\sim 50 \mu \mathrm{m}(z)$
	$\sim 120 \mu \mathrm{m} (r\varphi)$	$\sim 40 \mu \mathrm{m} (r\varphi)$
Standalone tracking efficiency ($p_T = 200 \text{ MeV}/c$)	~60%	~90%
Radius (innermost layer)	3.9 cm	2.5 cm

[11]

Working principle silicon sensors

- Incident particle excites electron from the valence band into the conduction band, leaving behind a positively charged hole
 - \rightarrow charge conduction

A p-n junction under a reverse bias voltage. Adapted from [18].

- Silicon sensors are based on the concept of a p-n junction
- Doping: the addition of impurity atoms to increase the conductivity
 - **n**-type: electrons are majority charge carrier
 - **p**-type: holes are majority charge carrier

Particle Detection

Robin Kan