FUTURE COLLIDERS

SWOT for various projects

- FCC-ee
- CEPC
- LC [Europe]
- LC [Japan]
- Diversification (PP+APP)
- R&D Muon Collider

DISCLAIMER: This is the result of an informal brainstorming

28/06/2024 — Stafoverleg

Patrick Koppenburg

[Opkoppenburg.bsky.social] [Opkoppenburg] [patrick.koppenburg@nikhef.nl]

SWOT

- STRENGTHS characteristics of the project that give it an advantage over others
- Weaknesses characteristics that place the project at a disadvantage relative to others
- OPPORTUNITIES elements in the environment that the project could exploit to its advantage
- THREATS elements in the environment that could cause trouble for the project
- The next slides are based on the input of the three first

FCC

- STRENGTHS At CERN; high lumi at Higgs, tera-Z, multiple IPs (redundancy); Clear upgrade path, FCC-hh; we know how to build it; continuation of expertise; attracts talents long term.
- Weaknesses Cost (hh even more); environment, soil disposal; limits diversification, future options; coordination across CH/F, governance; limit to beam E; only 1 location possible; no polarisation; hard to sell to public; magnets for hh unproven;
- OPPORTUNITIES long-term continuation; great for Europe; Flagship at CERN, secures its future; Magnet R&D (*hh*); lower cost for Europe; concrete plan for 60 years.
- THREATS Cost; late; CEPC; If it fails it's the end of HEP; HL-LHC needs to end; political risk; hard to sell to other fields, threat to other funding; energy consumption; sustainability; lose talents;

CEPC

See also FCC

Strengths Cheaper; earlier; simple approval process; ZH at the start; saves us money; competition with Europe;

Weaknesses openness, communication, collaboration, data access; CERN/Europe leadership loss; can they do it?; limit to beam E; political climate; travel; sustainability; no flagship at CERN; Positive relation with China; new direction for CERN; Cross-check of results if FCC; more funding free in Europe;

OPPORTUNITIES Earlier timeline; Lower cost for Europe;

THREATS (Geo)political; End of HEP in Europe, CERN leadership; Not accessible; What if it fails?;

LINEAR COLLIDER IN EUROPE

- STRENGTHS Higher energy, polarisation; feasible; neutrino programme; physics at low and high lumi; upgradable, CLIC/wakefield; fits CERN budget; different R&D programme;
- Weaknesses Single IP; lower lumi below $t\overline{t}$; no feasibility study; Energy limited: low discovery potential; R&D needed for CLIC; too little R&D for LC
- Opportunities Great physics, innovation in Europe; lower cost; flagship for CERN; cheaper option; accelerator developments; extendable in length Threats CERN DG: FCC: HEP ends elsewhere:

LINEAR COLLIDER IN JAPAN

See also LC-Europe.

Strengths Good to have a collider in Asia; They have expertise in e^+e^- ; open to collaboration; fills gap between HL-LHC and FCC

Weaknesses No flagship at CERN? Travel/sustainability; Is it still timely?

OPPORTUNITIES Political stability; second large facility in the world; Not our money; participation through CERN; relationship with Japan; opens floor for muons;

THREATS Lack of (inter)national enthousiasm; Japanese politics; stops HEP in Europe; Smaller physics programme than FCC; FCC; smaller community; Upgrades may not happen;

DIVERSIFICATION

- STRENGTHS Broader community; boost for APP; viability for CERN; detector R&D; more attractive to funding agencies; good for public opinion; better for other experiments;
- Weaknesses ET is too different; too many different projects; lose technology at CERN; diverting resources; lose CERN as hub, political leverage; no access to high energy frontier;
- OPPORTUNITIES any hint will provide arguments for next facility; focus on AI, quantum; Quantum sensing; links to other fields; Find new physics in new ways, axions; revolution in ν ; multiple locations; collaboration PP/APP;
- THREATS FCC leaves no money; Loss of flasghip programme; loss of collab. big science; threat to CERN; projects too small to make an impact;

Muon colliders

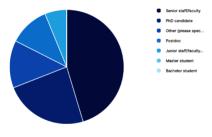
- STRENGTHS low synchrotron; new technology; low running cost; NP opportunity; Higgs pole and high energy; staging possible; KT; small; coupling to 2nd generation; highest priority for US; excitement from ECR; synergies with HL-LHC for timing; R&D lower cost;
- WEAKNESSES Not yet proven; neutrino radiation; no flagship at CERN (?); uncertain timeline and costs;
- OPPORTUNITIES Excitement for the field; CERN has infrastructure for R&D; Links with Fermilab; new technologies; neutrino source; innovative; sellable to public; sustainable; smaller; challenging but clear goal;
- THREATS at Fermilab; ν flux and local politics; high risk; takes to big; In Europe delays due to HL-LHC; may not werk; competition Europe/USA;

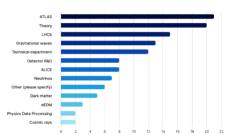
LEP 3 OR LHC 2

Strengths cheap; still acceptable radiation at ZH, multiple experiments; short gap after LHC; bridge to long term

Weaknesses sync. radiation; lower lumi; large energy needs; Higgs self coupling out of reach?

OPPORTUNITIES Forces diversification; magnet developments for pp THREATS old tech.

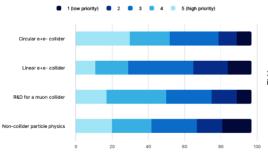

Survey


SURVEY

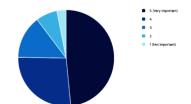
Response statistics: 98 replies

4. I am a

5. I am part of the following group(s)

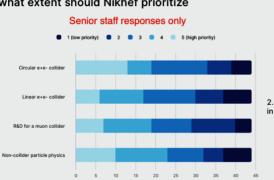


We will not correlate these groups with the responses, except for splitting responses into staff/non-staff.

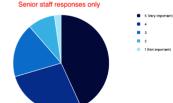


SURVEY

1. For the upcoming European strategy update, to what extent should Nikhef prioritize

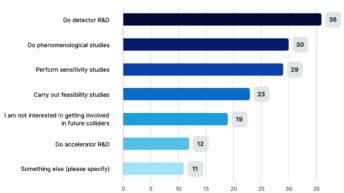


2. How important is it that the next collider is built in Europe?

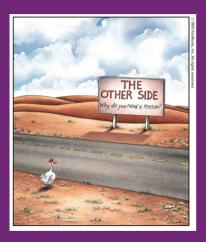


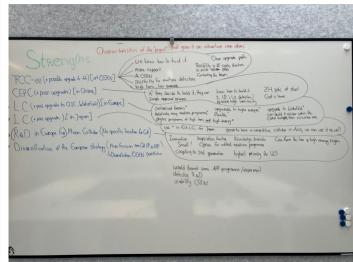
SURVEY (STAFF ONLY)

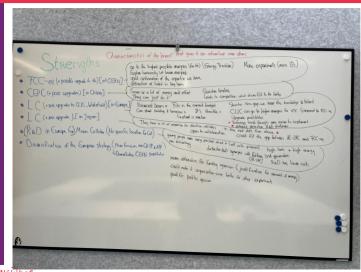
1. For the upcoming European strategy update, to what extent should Nikhef prioritize

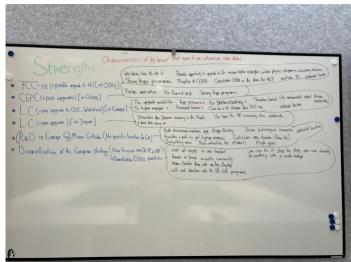

2. How important is it that the next collider is built in Europe?

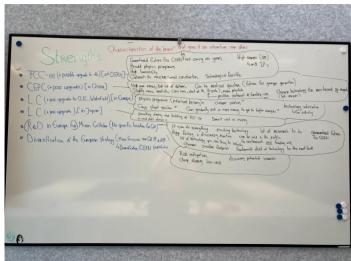
SURVEY

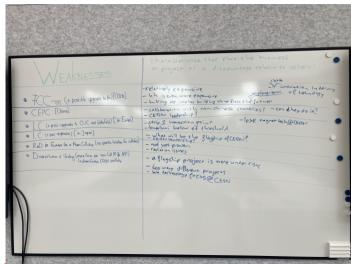

3. If you would like to get more involved in future colliders, how would you like to do that?

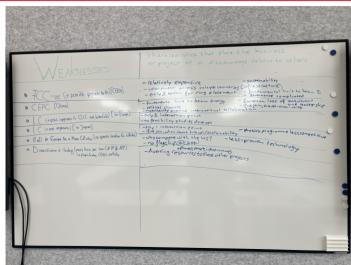

Thanks for participating!



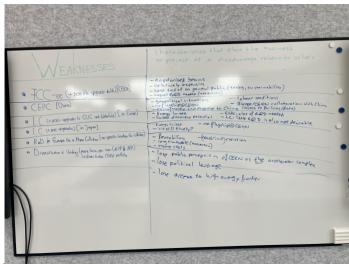



Backup

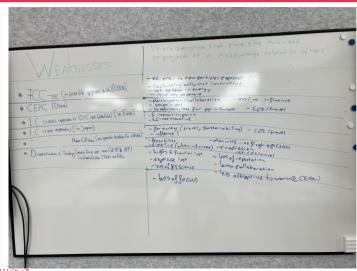




Weaknesses

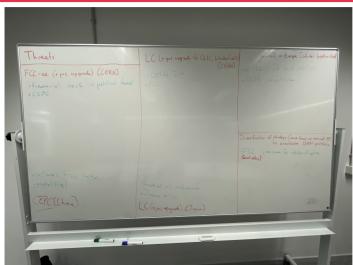


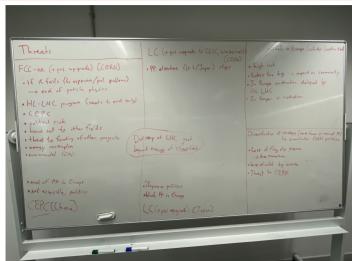
Nik|he

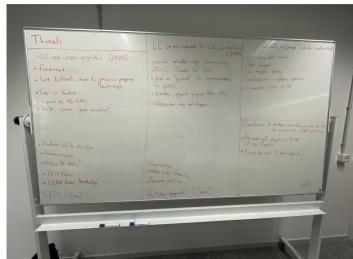

Weaknesses

WEAKNESSES

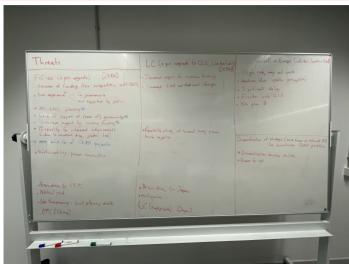

WEAKNESSES



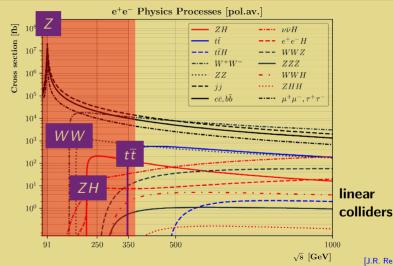




[B



Nik|hef


Patrick Koppenburg

[B

ECFA e⁺e⁻ Higgs/Top/EW Factory Study

circular colliders

[J.R. Reuter]