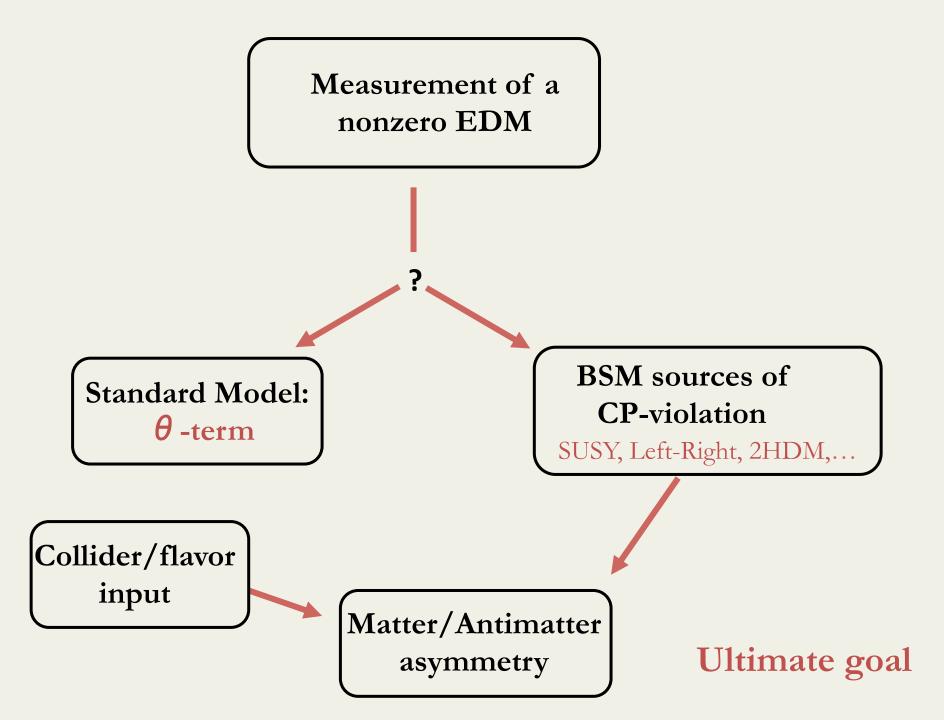
Classes of EDM experiments

Jordy de Vries, Nikhef, Amsterdam


Topical Lectures on electric dipole moments, Dec. 14-16

Measurement of a nonzero EDM **BSM** sources of **Standard Model: CP**-violation θ -term SUSY, Left-Right, 2HDM,...

For the forseeable future: EDMs are 'background-free' searches for new physics

Very active experimental field

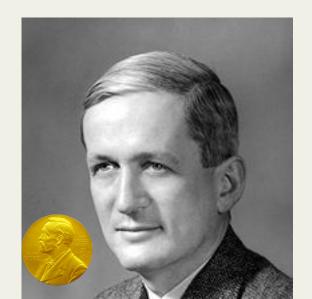
	System	Group	Limit	C.L.	Value	Year
ſ	²⁰⁵ Tl	Berkeley	1.6×10^{-27}	90%	$6.9(7.4) \times 10^{-28}$	2002
? -	YbF	Imperial	10.5×10^{-28}	90	$-2.4(5.7)(1.5) \times 10^{-28}$	2011
l	ThO	ACME	8.7×10^{-29}	90	$-2.1(3.7)(2.5) \times 10^{-29}$	2014
	n	Sussex-RAL-ILL	3.0×10^{-26}	90	$0.2(1.5)(0.7) \times 10^{-26}$	2006
	¹²⁹ Xe	UMich	6.6×10^{-27}	95	$0.7(3.3)(0.1) \times 10^{-27}$	2001
	¹⁹⁹ Hg	UWash	7.4×10^{-30}	95	$-2.2(2.8)(1.5) \times 10^{-30}$	2016
	²²⁵ Ra	Argonne	1.4×10^{-23}	95	$-0.5(1.5)(0.01) \times 10^{-23}$	2016
	muon	E821 BNL g-2	1.8×10^{-19}	95	$0.0(0.2)(0.9) \times 10^{-19}$	2009

- Why do experiments on all these systems? Why not pick one!
- How do the experiments compare? What does $dn/dHg \sim 10^{-3,-4}$ imply?
- Are there new systems that would be interesting to study?

Classes of EDM experiments

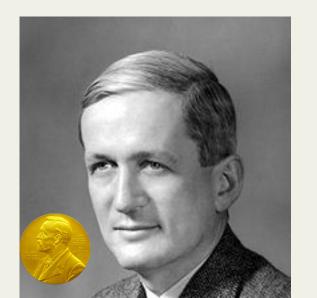
Class 1: neutron EDM experiments (traditional, but running out of steam?)

Class 2: Paramagnetic atoms and molecules
 (powerful, but 'limited scope'. My EDM bet! Dutch experiment!)


Class 3: Diagmagnetic atoms
 (powerful but hard to understand, nuclear physics uugh)

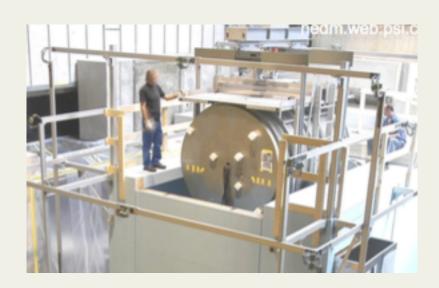
Class 4: Storage ring experiments (the future?)

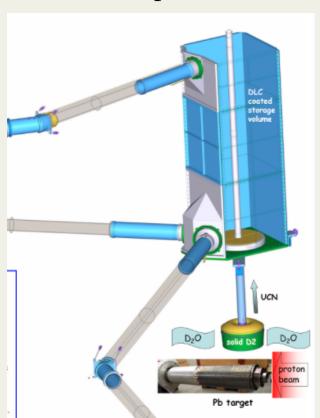
(my favorite experiment but expensive and perhaps science fiction)


Neutron EDM experiments

- First EDM experiment (Ramsey, Smith, Purcell '1951) used a neutron beam
- Experiment in 1951, published in 1957....
- Not realized that EDMs implied CPV, but knew that PV was required
- They measured zero, and since strong interactions were assumed to be P invariant, they did not care to publish....

Neutron EDM experiments

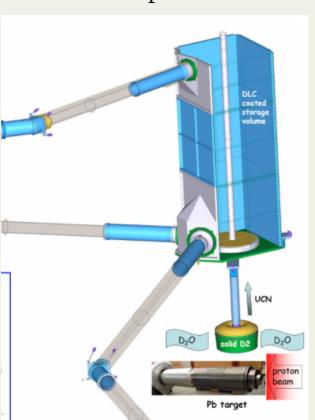

- First EDM experiment (Ramsey, Smith, Purcell '1951) used a neutron beam
- Experiment in 1951, published in 1957....
- Not realized that EDMs implied CPV, but knew that PV was required
- They measured zero, and since strong interactions were assumed to be P invariant, they did not care to publish....
- In 1956/57 Lee/Yang propose P violation, and Wu measures it
- They then decide to publish the paper

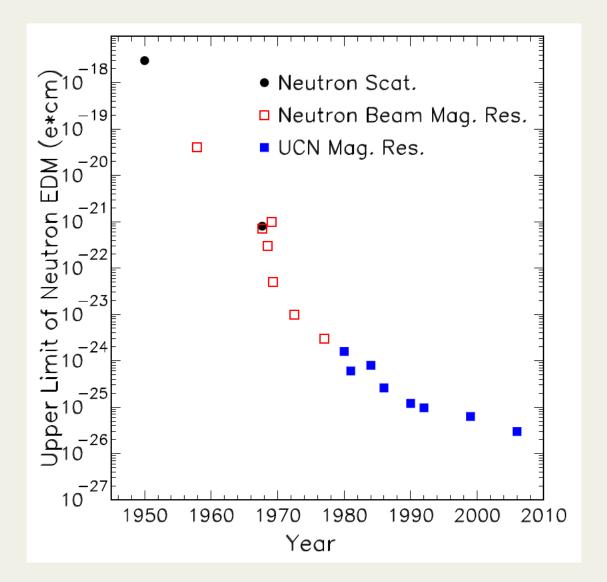


- They got $d_n < 5*10^{-20}$ e cm
- So theta $< 10^{-4}$, but they did not know
- After discovery of CPV in '64, the field restarted
- Current limit : $d_n < 3*10^{-26}$ e cm (2006)

Modern Experiments

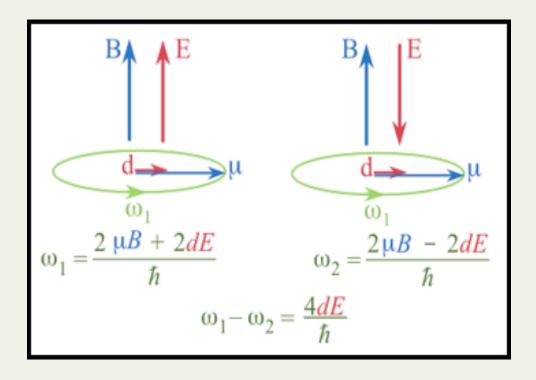
- Originally neutron beams were used but systematics too hard to control
- Since 80's-90's use ultracold neutrons (speeds $\sim 7 \text{ m/s}$)
- 6 ongoing/planned experiments (PSI, TRIUMF, LANL, SNS, Munich, ILL)
- At these energies (100 nano-eV) neutrons become reflective
- At PSI: guided from the production via a beamline to a trap





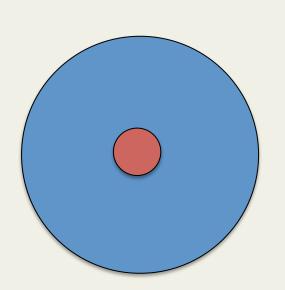
Modern Experiments

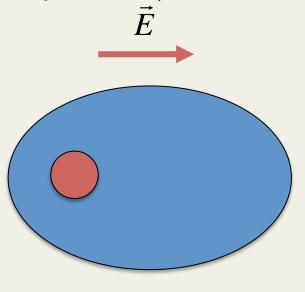
- Originally neutron beams were used but systematics too hard to control
- Since 80's-90's use ultracold neutrons (speeds $\sim 7 \text{ m/s}$)
- 6 ongoing/planned experiments (PSI, TRIUMF, LANL, SNS, Munich, ILL)
- At these energies (100 nano-eV) neutrons become reflective
- At PSI: guided from the production via a beamline to a trap
- Gravitional selection
- Main source of uncertainty: stable B field
- Use Hg as comagnometer


Running out of steam?

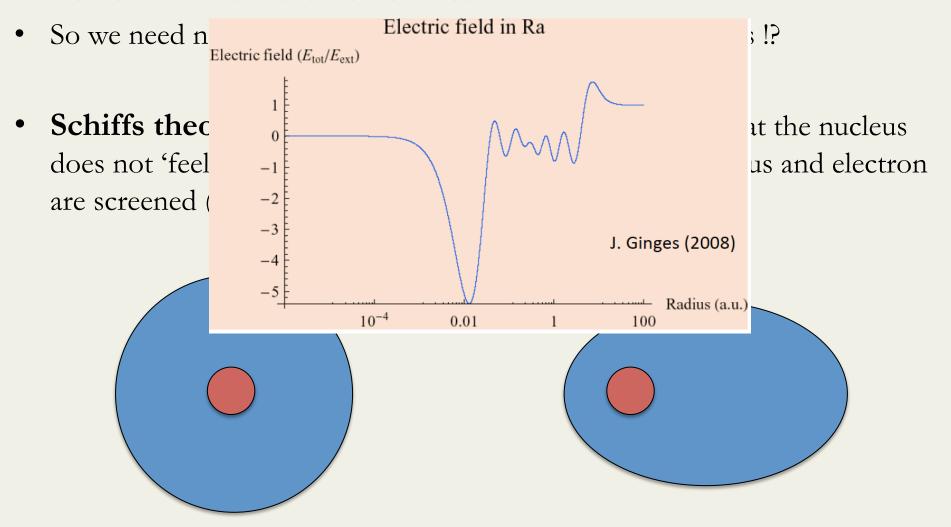
All experiments suffer from lack of neutrons

Statistics limited, difficult to improve by a large factor


Why neutrons?


- Why not protons? Much easier to produce
- Remember the measurement idea!

Why not atoms?


- Why not protons? Much easier to produce
- Remember the measurement idea!
- So we need neutral systems! Why not pick hydrogen atoms!?
- **Schiffs theorem:** the electron cloud will rearrange so that the nucleus does not 'feel' an external E-field. The EDMs of the nucleus and electron are screened (clasical argument but works in QM as well)

Why not atoms?

- Why not protons? Much easier to produce
- Remember the measurement idea!

Why heavy atoms?

 Schiffs theorem is exact for point particles and non-relativistic dynamics

• So 2 loopholes:

- 1) The nucleus is not pointlike
- 2) Electrons in heavy atoms are relativistic
- 1) paramagnetic, no nuclear spin, but unclosed electron shell. Sensitive to electron EDM but **need heavy atoms**!
- 2) Diamagnetic, closed electron shell and nonzero nuclear spin. **Need heavy atoms**!

Classes of EDM experiments

Class 1: neutron EDM experiments (traditional, but running out of steam?)

Class 2: Paramagnetic atoms and molecules
 (powerful, but 'limited scope'. My EDM bet! Dutch experiment!)

Class 3: Diagmagnetic atoms
 (powerful but hard to understand, nuclear physics uugh)

Class 4: Storage ring experiments (the future?)

(my favorite experiment but expensive and perhaps science fiction)

Probing the electron EDM

r	System	Group	Limit	C.L.	Value	Year
	²⁰⁵ TI	Berkeley	1.6×10^{-27}	90%	$6.9(7.4) \times 10^{-28}$	2002
e 1	YbF	Imperial	10.5×10^{-28}	90	$-2.4(5.7)(1.5) \times 10^{-28}$	2011
L	ThO	ACME	8.7×10^{-29}	90	$-2.1(3.7)(2.5) \times 10^{-29}$	2014

• Schiff's theorem overcome by relativity (electric and magnetic fields mix)

$$d_A(d_e) = K_A d_e \qquad K_A \propto Z^3 \alpha_{em}^2$$

- So for light systems large suppression
- But for heavy systems we can even enhance the EDM!

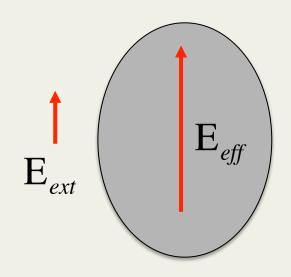
Probing the electron EDM

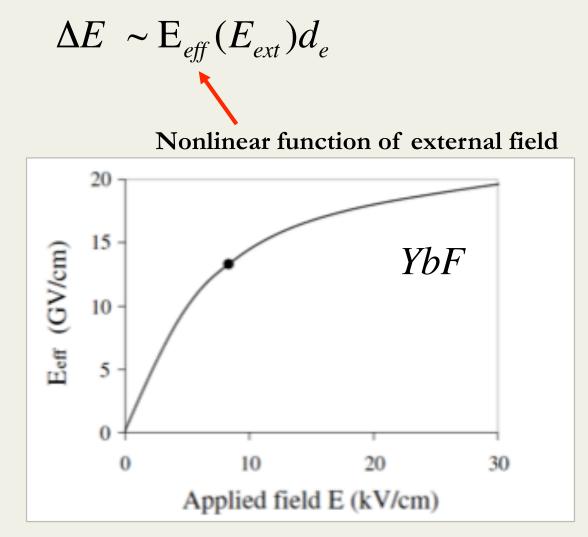
r	System	Group	Limit	C.L.	Value	Year
	²⁰⁵ TI	Berkeley	1.6×10^{-27}	90%	$6.9(7.4) \times 10^{-28}$	2002
e 1	YbF	Imperial	10.5×10^{-28}	90	$-2.4(5.7)(1.5) \times 10^{-28}$	2011
	ThO	ACME	8.7×10^{-29}	90	$-2.1(3.7)(2.5) \times 10^{-29}$	2014

• Schiff's theorem overcome by relativity (electric and magnetic fields mix)

$$d_A(d_e) = K_A d_e \qquad K_A \propto Z^3 \alpha_{em}^2$$

- So for light systems large suppression
- But for heavy systems we can even enhance the EDM!

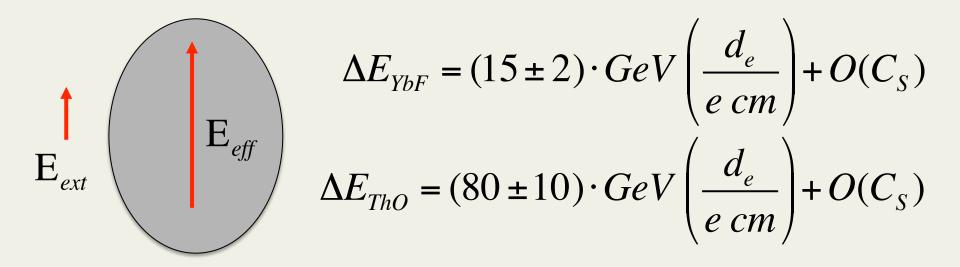

Bound on atomic Tl EDM:
$$d_{205_{Tl}} < 9 \cdot 10^{-25} e cm$$


$$d_A(d_e) = K_A d_e$$
 $K_{Tl} = -(570\pm20)$ Strong enhancement!

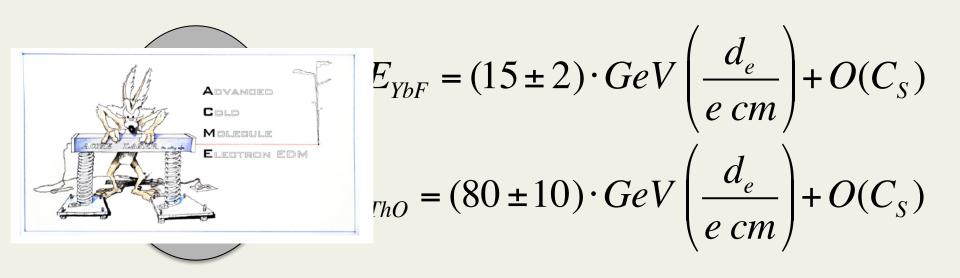
$$d_e < 1.6 \cdot 10^{-27} \ e \ cm$$

State-of-the-art: polar molecules

Polar molecules: Convert small external to huge internal field



Plot from Hudson et al PRL '02


State-of-the-art: polar molecules

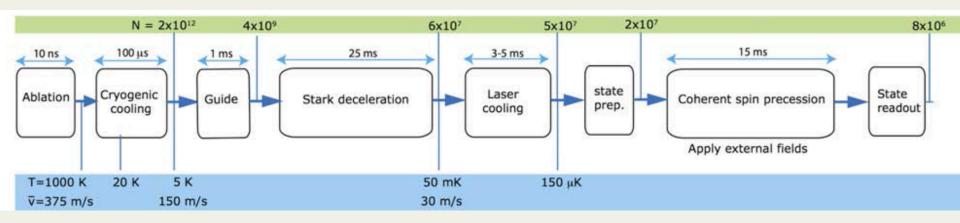
Polar molecules: Convert small external to huge internal field

State-of-the-art: polar molecules

Polar molecules: Convert small external to huge internal field

$$d_e < 8.7 \cdot 10^{-29} \ e \ cm$$

Current world record


From ACME (Harvard/Yale) collaboration (2014)

Can be improved a lot!

Table-top experiment! O(5-10) people, few million euro

EDMs @ Nikhef/RUG

Use new methods to decelerate and laser-cool BaF molecules

Classes of EDM experiments

Class 1: neutron EDM experiments (traditional, but running out of steam?)

Class 2: Paramagnetic atoms and molecules
 (powerful, but 'limited scope'. My EDM bet! Dutch experiment!)

Class 3: Diagmagnetic atoms
 (powerful but hard to understand, nuclear physics uugh)

Class 4: Storage ring experiments (the future?)

(my favorite experiment but expensive and perhaps science fiction)

Probing nuclear CP violation

Graner et al, '16

- Diamagnetic, closed electron shell and nonzero nuclear spin.
- Best EDM limit in the world! $d_{199}_{Hg} < 8.7 \cdot 10^{-30} e cm$
- What about Schiff screening, nucleus is not relativistic....

Probing nuclear CP violation

Graner et al, '16

- Diamagnetic, closed electron shell and nonzero nuclear spin.
- Best EDM limit in the world! $d_{199}_{Ho} < 8.7 \cdot 10^{-30} e cm$
- What about Schiff screening, nucleus is not relativistic....
- But it has a finite size!

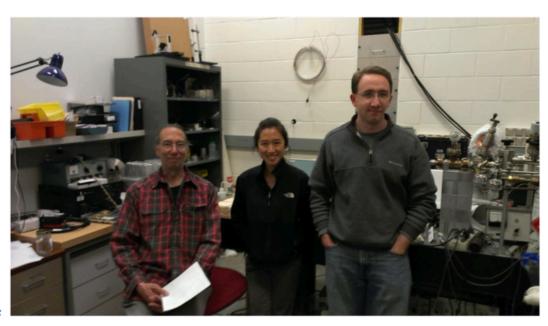
Typical suppression:
$$\frac{d_{Atom}}{d_{nucleus}} \propto 10Z^2 \left(\frac{R_N}{R_A}\right)^2 \approx 10^{-3}$$

Atomic part well under control

$$d_{199}_{Hg} = (2.8 \pm 0.6) \cdot 10^{-4} S_{Hg} e fm^2$$

- So the atomic limit gets screened by a factor 1000 roughly
- Xe screening is a bit worse, but less for Ra.

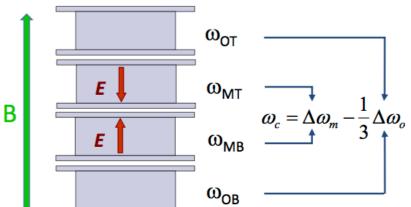
Huge collaboration....

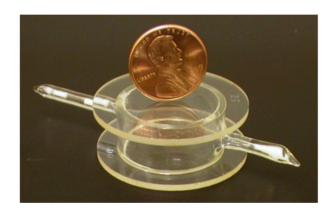

The Team

Graduate Students
Jennie Chen
Brent Graner*

Scientific Glassblower Eric Lindahl

Faculty B. R. Heckel

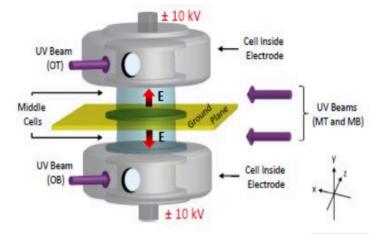

Primary support from NSF
* Supported by DOE Office of
Nuclear Science



Slide from B. Heckel, KITP '16

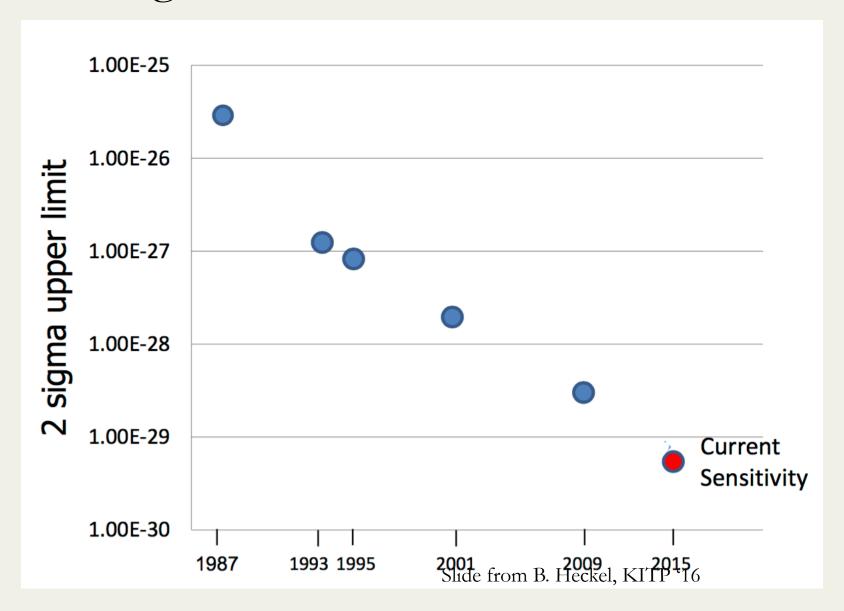
Current EDM Experiment

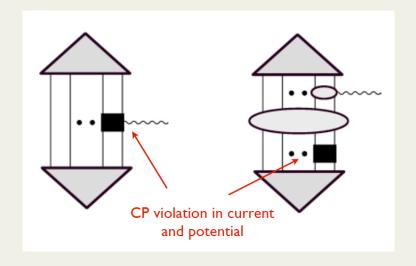
$$H = -(\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E})$$



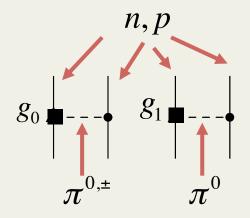
T₂ Spin Relaxation: 300 - 600 sec

$$\omega_c = \frac{\mu}{\hbar} \left(-\frac{8}{3} \frac{\partial^3 B}{\partial z^3} \Delta z^3 \right) + \frac{4dE}{\hbar}$$


Cancels up to 2nd order gradient noise Same EDM sensitivity as Middle Difference



Probing nuclear CP violation



Calculating Schiff Moments

Flambaum, de Jesus, Engel, Dobaczewski, Dmitriev, Sen'kov,.....

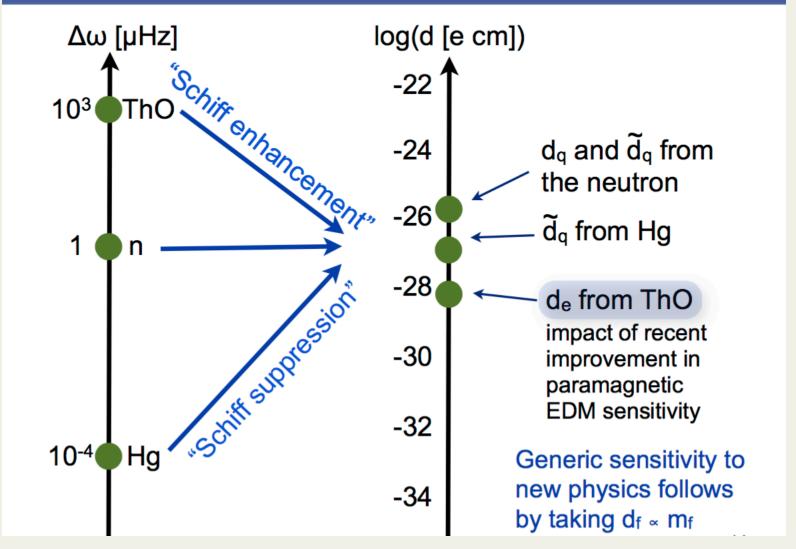
CP-odd potential

- Nuclear Schiff moment dominated by CP-violating pion exchange
- Same couplings that contribute to nEDM at loop level!
- Very complicated many-body calculation
- Use some nuclear model and mean-field theory

Nuclear theory... Uuugh....

$$S_A \sim g(a_0\overline{g}_0 + a_1\overline{g}_1) e fm^3$$

$$g = 13.5$$


Flambaum, de Jesus, Engel, Dobaczewski, Dmitriev, Sen'kov,.....

	a ₀ range (best)	a ₁ range (best)
¹⁹⁹ Hg	0.03 ± 0.025 (0.01)	0.030 ± 0.060 (±0.02)
²²⁵ Ra	-3.5±2.5 (-1.5)	14±10 (6)

table from review: Engel et al, '13

- Based on calculations from various groups
- Hg: spread >100% Ra: $\sim 80\%$, not clear how to interpret this
- Worse: not clear how to improve this....
- Makes interpretation of experiments difficult....

Summary of the bounds

Slide from Adam Ritz, Trento, '16

Classes of EDM experiments

Class 1: neutron EDM experiments (traditional, but running out of steam?)

Class 2: Paramagnetic atoms and molecules
 (powerful, but 'limited scope'. My EDM bet! Dutch experiment!)

Class 3: Diagmagnetic atoms
 (powerful but hard to understand, nuclear physics uugh)

Class 4: Storage ring experiments (the future?)

(my favorite experiment but expensive and perhaps science fiction)

EDMs of light nuclei

Anomalous magnetic moment

Electric dipole moment


$$\frac{d\vec{S}}{dt} = \vec{S} \times \vec{\Omega}$$

$$\vec{\Omega} = \frac{q}{m} \left[a\vec{B} + \left(\frac{1}{v^2} - a \right) \vec{v} \times \vec{E} \right] + 2d \left(\vec{E} + \vec{v} \times \vec{B} \right)$$

All-purpose ring (${}^{1}H$, ${}^{2}H$, ${}^{3}He$, ...) ~ $10^{-28,29}$ e cm

100-1000 x current neutron EDM sensitivity! (takes a while tough....)

Already used for muon EDM $d_{\mu} \leq 1.8 \cdot 10^{-19} \ e \ cm$ (95% C.L.)

Bennett et al (BNL g-2) PRL '09

Major progress in:

JEDI collaboration, *PRL* '15, '16

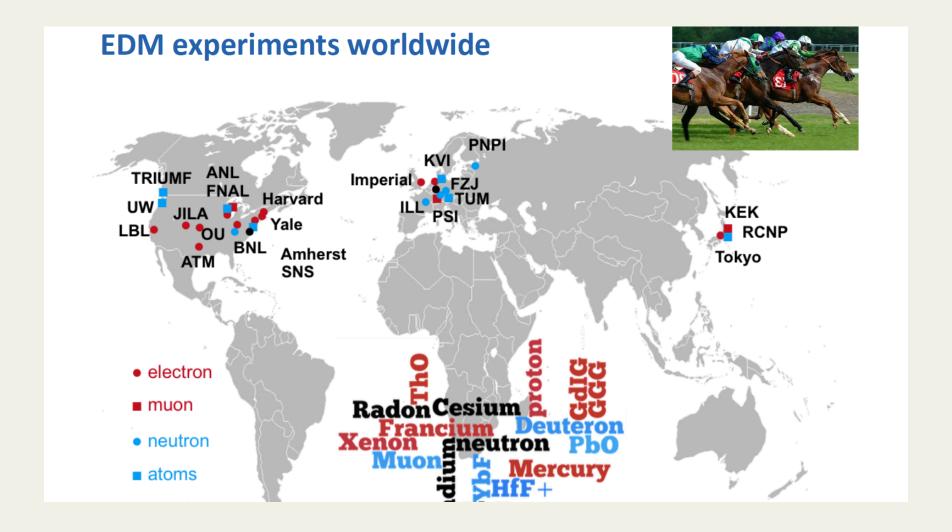
Why EDMs of light nuclei

- Several advantages of using light instead of heavy systems
- No Schiff screening! No suppression associated to Hg/Ra/Xe
- This means a measurement at 10⁻²⁶ level would be world-leading
- Theory is well under control. Few-body equations are 'easy'

$$d_D = 0.9(d_n + d_p) + [(0.18 \pm 0.02) \overline{g}_1 + (0.0028 \pm 0.0003) \overline{g}_0] e fm$$

Why EDMs of light nuclei

- Several advantages of using light instead of heavy systems
- No Schiff screening! No suppression associated to Hg/Ra/Xe
- This means a measurement at 10⁻²⁶ level would be world-leading
- Theory is well under control. Few-body equations are 'easy'


$$d_D = 0.9(d_n + d_p) + \left[(0.18 \pm 0.02) \,\overline{g}_1 + (0.0028 \pm 0.0003) \,\overline{g}_0 \,\right] e \, fm$$

- Ratio of EDMs indicate source of CP violation
- Theta term: dD < dn, for BSM generally; dD >> dn (next lecture)
- Disadvantage: Expensive, requires a big storage ring (50 million..)
- Under development in Germany and Korea but funding not guaranteed

Complementary measurements

- Class 1: neutron EDM experiments
 - Theta + BSM CP violation involving quarks and gluons
 - Difficult to improve
 - Class 2: Paramagnetic atoms and molecules
 - Very sensitive to electron EDM, but not much more
 - No SM background, not even theta.
 - Atomic theory is under control
 - Class 3: Diagmagnetic atoms
 - Sensitive to nuclear CPV and thus complements nEDM
 - Very good measurements but Schiff screening and theory...
 - Class 4: Light nuclei
 - New idea, no Schiff screening and good theory
 - Expensive and requires new technology

Race for an EDM

• And new experiment at Groningen/Nikhef using BaF molecule

Will we reach the CKM

System	Current limit	CKM contribution
Neutron	< 10 ⁻²⁶ e cm	10 ^{-31,-32} e cm
¹⁹⁹ Hg	< 10 ⁻²⁹ e cm	10 ^{-33,-35} e cm
Electron	< 10 ⁻²⁸ e cm	10 ^{-38,-39} e cm

- Not in the near future....
- If we would, the EDMs will become 'ordinary' observables and then the limiting theory will probably make them a check of the CKM paradigm but not much more.

My take

- The molecular experiments can still go far
- That makes them, in my mind, the discovery system
- But note: they probe mostly the electron EDM

- The Ra-EDM is extremely interesting as well. Experiments are now at : $dRa < 10^{-23}$ e cm (100x improvement in 1 year) and expected to reach 10^{-27} in a couple of years
- Storage rings, if promises are achieved, could have a bigger reach then other experiments. But still far away....
- If a nonzero EDM would be measured anywhere: to figure out the source we need several systems.