

UNIVERSITY OF AMSTERDAM Nikhef **NENON**

Exploring Accidental Coincidences in Dark Matter Direct Detection

Pranati Kharbanda

NNV Subatomic and Astro/Particle Physics | Soesterberg | 8th November, 2024

What will this talk explore?

Detecting dark matter using XENONnT detector

A particularly notorious background: **Accidental Coincidences**

How do we deal with them?

Probing the unknown with XENONnT detector

Low background experiment to search for rare events

Physics focus: ✓ **Dark Matter direct detection** \checkmark Neutrino physics

✓ Beyond SM

Operating underground at INFN – Laboratori Nazionali del Gran Sasso (LNGS), Italy

Increasing exposure \longrightarrow new backgrounds?

Pranati Kharbanda NNV - November 2024

3

How does the detector work?

EVERY INTERACTION CREATES AN S1 AND S2!

Challenge in detection of rare events: Backgrounds $200 \text{ GeV}/c^2$ WIMP $10⁴$ **ER** background

-

- **Electronic recoil (ER)**
	- $\sqrt{222}$ Radon and its decay products
	- ✓ Detector materials
- e e e e -

- Nuclear recoils (NR)
	- ✓ Radiogenic neutrons
	- \checkmark Elastic scattering of neutrinos with nucleus
- **E** Surface background
	- \checkmark ²¹⁰Pb plate-out on detector walls

Challenge in detection of rare events: Backgrounds $200 \text{ GeV}/c^2$ WIMP $10⁴$

- **Electronic recoil (ER)**
	- $\sqrt{222}$ Radon and its decay products e -

e -

- ✓ Detector materials
- Nuclear recoils (NR)
	- \checkmark Radiogenic neutron \checkmark Elastic scattering of
- **E** Surface background
	- \checkmark ²¹⁰Pb plate-out on detector walls

Why are they important to study?

Significant background

Scaling with mass

How do we estimate them?

Selection of isolated S1 and S2 from data Integral Identify sources of isolated S1 and S2

Artificially pair these S1 and S2 to make an event

Create PDF of S1 and S2

Create mathematical model of PDF of S1 and S2

Comparing the two approaches

Data driven No predictive power for next-gen detectors Not fundamental Simple and fast **Benefits from large** volumes of existing data

$\mathbf{F} = \mathbf{F} \mathbf{F}$ First principles Has predictive power for next-gen detectors ▪ **Influence design choices (XLZD) ·** Predict sensitivity **Fundamental** Complex and convoluted effects Need data driven model to be validated

Overview of first principles model

Step 1: Identify sources

- **Noise from sensors**
- **Events with electrons not** being detected
- Signal misclassification
- **Light emission from** detector materials

Isolated S1 **Isolated S2**

- **Events with photons not** reaching sensors
- **Electron emission from** detector materials/impurities
- **Inefficiency of electron** extraction
- **Events in gas**

Overview of first principles model

Step 2: Create math model of PDF of S1 and S2

- Function of detector parameters
- ✓ Detector geometry
- ✓ Electric field
- ✓ Efficiencies
- Scalable to bigger detectors

Outlook

Refine model and include remaining sources

See the effect on sensitivity for XLZD detector

Define optimal configurations for XLZD detector to mitigate ACs

Thank you! Questions?

Backup

Quanta generation

Isolated S1 and S2 spectra

