

UNIVERSITY OF AMSTERDAM Nikhef XENON

Accidents in the Dark:

Exploring Accidental Coincidences in Dark Matter Direct Detection

Pranati Kharbanda

NNV Subatomic and Astro/Particle Physics | Soesterberg | 8th November, 2024

What will this talk explore?

Detecting dark matter using XENONnT detector

A particularly notorious background: Accidental Coincidences

How do we deal with them?

Probing the unknown with XENONnT detector

|--|--|--|

Low background experiment to search for rare events

Physics focus:
✓ Dark Matter direct detection
✓ Neutrino physics
✓ Deward SM4

✓ Beyond SM

Operating underground at INFN – Laboratori Nazionali del Gran Sasso (LNGS), Italy

NNV - November 2024

How does the detector work?

EVERY INTERACTION CREATES AN S1 AND S2!

Challenge in detection of rare events: Backgrounds

- Electronic recoil (ER)
 - ✓ ²²²Radon and its decay products
 - ✓ Detector materials

- Nuclear recoils (NR)
 Rediagonic neutron
 - ✓ Radiogenic neutrons
 - Elastic scattering of neutrinos with nucleus
- Surface background
 - ✓ ²¹⁰Pb plate-out on detector walls

Challenge in detection of rare events: Backgrounds

- Electronic recoil (ER)
 - ✓ ²²²Radon and its decay products
 - ✓ Detector materials
- Nuclear recoils (NR)
 - ✓ Radiogenic neutron✓ Elastic scattering of
- Surface background
 - ✓ ²¹⁰Pb plate-out on detector walls

Why are they important to study?

Significant background

Scaling with mass

How do we estimate them?

Data driven approach

Selection of isolated S1 and S2 from data

Artificially pair these S1 and S2 to make an event

Create PDF of S1 and S2

Identify sources of isolated S1 and S2

Create mathematical model of PDF of S1 and S2

Comparing the two approaches

Data driven

- No predictive power for next-gen detectors
- Not fundamental
- Simple and fast

First principles Has predictive power for next-gen detectors Influence design choices (XLZD) Predict sensitivity **Fundamental** Complex and convoluted effects Need data driven model to

be validated

Pranati Kharbanda

Overview of first principles model

Step 1: Identify sources

Isolated S1

- Noise from sensors
- Events with electrons not being detected
- Signal misclassification
- Light emission from detector materials

Isolated S2

- Events with photons not reaching sensors
- Electron emission from detector materials/impurities
- Inefficiency of electron extraction
- Events in gas

Overview of first principles model

Step 2: Create math model of PDF of S1 and S2

- Function of detector parameters
- ✓ Detector geometry
- ✓ Electric field
- ✓ Efficiencies
- Scalable to bigger detectors

Outlook

Refine model and include remaining sources

See the effect on sensitivity for XLZD detector

Define optimal configurations for XLZD detector to mitigate ACs

Thank you! Questions?

Backup

Quanta generation

Isolated S1 and S2 spectra

