

Search for heavy diboson resonances in semileptonic final states

Elizaveta Cherepanova*

NNV (astro)particle physics fall meeting

November 8, 2024

- The **Standard Model (SM)** of particle physics works well but has uncovered points:
 - Gravity
 - Hierarchy problem
 - Matter-antimatter asymmetry

- The **Standard Model (SM)** of particle physics works well but has uncovered points:
 - Gravity
 - Hierarchy problem
 - Matter-antimatter asymmetry
- Several **new physics models** suggest possible solutions:
 - Two-Higgs-doublet model (2HDM)
 - Heavy vector triplet (HVT) W', Z'
 - Randall–Sundrum model

Introduction Nik hef

• The **Standard Model (SM)** of particle physics works well but has uncovered points:

E. Cherepanova

- Gravity
- Hierarchy problem
- Matter-antimatter asymmetry
- Several new physics models suggest possible solutions:
 - Two-Higgs-doublet model (2HDM)
 - Heavy vector triplet (HVT) W', Z'
 - Randall–Sundrum model

Predict exsisting new heavy resonances that decay into a pair of SM bosons

or

VV

Nikthef Search for dibosons

• Looking for heavy resonances that decays into a pair of bosons: *WW*, *WZ*, *ZZ*, *Wh* and *Zh*

Nikthef Search for dibosons

- Looking for heavy resonances that decays into a pair of bosons: WW, WZ, ZZ, Wh and Zh
- One boson decays leptonically:
 - 1. $Z \rightarrow \nu \nu$ (0-lepton)
 - 2. $W \rightarrow l\nu$ (1-lepton)
 - 3. $Z \rightarrow ll$ (2-lepton)

Nikinef Search for dibosons

- UNIVERSITEIT VAN AMSTERDAM
- Looking for heavy resonances that decays into a pair of bosons: WW, WZ, ZZ, Wh and Zh
- One boson decays leptonically:
 - 1. $Z \rightarrow \nu \nu$ (0-lepton)
 - 2. $W \rightarrow l\nu$ (1-lepton)
 - 3. $Z \rightarrow ll$ (2-lepton)
- One boson decays hadronically:
 - 1. $V/h \rightarrow 2$ small-R jets (Resolved)
 - 2. $V/h \rightarrow 1$ large-R jet (Merged)

- 1. $V/h \rightarrow 2$ small-R jets (Resolved)
- 2. $V/h \rightarrow 1$ large-R jet (Merged)
- The second round of the analysis that uses full Run-2 ATLAS data

Search for dibosons Nik hef

- Looking for heavy resonances that decays into a pair of bosons: WW, WZ, ZZ, Wh and Zh $v/\ell/\ell$
- One boson decays leptonically:
 - 1. $Z \rightarrow \nu \nu$ (0-lepton)
 - 2. $W \rightarrow l\nu$ (1-lepton)
 - 3. $Z \rightarrow ll$ (2-lepton)
- One boson decays hadronically:

X

 $l = e, \mu$

q/b

V = Z, W

 \bar{q}/\bar{b}

• Expect our signal to look like a resonance peak

Ideal situation

Mass of diboson

Nikinef Signal and backgrounds

Universiteit van Amsterdam

- Expect our signal to look like a resonance peak
- The signal has in the final states:
 - Electrons and/or muons
 - Missing energy (from un-detected neutrinos)
 - Jets

Mass of diboson

Nikthef Signal and backgrounds

- Expect our signal to look like a resonance peak
- The signal has in the final states:
 - Electrons and/or muons
 - Missing energy (from un-detected neutrinos)
 - Jets
- Other processes have similar final states
- Need to efficiently reject background events:
 - Detailed event selection
 - Various techniques and algorithms

E. Cherepanova

Nikthef Multi-Class Classifier

- >DNN based classifier to orthogonalise VV and Vh channels
- Uses jet substructure and jet 4-momenta as input
- Outputs 5 classes: Higgs, W, Z, top, QCD
- Only applied on events that are selected in both VV and Vh

Nikthef Multi-Class Classifier

- >DNN based classifier to orthogonalise VV and Vh channels
- Uses jet substructure and jet 4-momenta as input
- Outputs 5 classes: Higgs, W, Z, top, QCD
- Only applied on events that are selected in both VV and Vh
 - Uses the probability ratio as the discriminative variable

 Targeted V(lep)V(qq) final state has a lot of V+jets background

• Targeted V(lep)V(qq) final state has a lot of V+jets background

- Cut-based tagger to reduce the V+jets background
- Uses p_T -dependent variables:
 - 1. Large-R jet mass m(J)
 - 2. Jet substructure variable D_2
 - 3. Number of associated tracks to the jet
- Large-R jets are tagged if they pass 50% signal efficiency WP of the tagger

[GeV]

(r) E 120

140

100

80

60 ·

40

20

≻Removal of >60 % background events depending on a region

JNIVERSITEIT

Nikthef Expected sensitivity

- Simultaneous binned likelihood fit across all analysis regions
- Final observable:
 - 0-lepton: diboson transverse mass
 - 1-,2-lepton: diboson invariant mass
- Major backgrounds (V+jets, $t\bar{t}$) are freely floating
- Minor backgrounds use shape/normalisation from theory predictions

Nikinef Expected sensitivity

- Simultaneous binned likelihood fit across all analysis regions
- Final observable:
 - 0-lepton: diboson transverse mass
 - 1-,2-lepton: diboson invariant mass
- Major backgrounds (V+jets, $t\bar{t}$) are freely floating
- Minor backgrounds use shape/normalisation from theory predictions
 - Significant improvement wrt Round 1
 - Pseudo data used to estimate sensitivity
 - Statistical + experimental systematic uncertainties are included

E. Cherepanova

σ_{excl} [fb]

Upper limit on diboson cross-section x BR

Jniversiteit

jan Amsterdam

- Variety of models predict heavy new particles decaying to dibosons
- Search for their semileptonic decays is very complicated, but possible
- The 2nd round of the analysis is presented
 - Many developments wrt the round 1
 - Expected sensitivity looks very promising
- Still some work to do:
 - Finalise fit strategy
 - Add missing uncertainties
 - When it is done \rightarrow look at the real data!

Thank you for your attention!

Back up

Nikthef Analysis overview

Benchmark models:

- Randall–Sundrum (RS) Radion (spin-0)
- 2HDM pseudoscalar A (spin-0)
- Heavy Vector Triplet (HVT) W'/Z' (spin-1)
- RS Graviton (spin-2)

Production modes:

- Gluon-gluon fusion (ggF)
- Vector boson fusion (VBF)
- Drell-Yan (DY)
- b-associated production of A (bbA)

JNIVERSITEIT

AN AMSTERDAM

Nikinef Analysis flow-chart

Nikthef Region prioritization and orthogonalization

• Lepton channels are orthogonal by construction

But!

- Hadronic selection (merged/resolved) is not orthogonal
- VV and Vh SRs are not orthogonal: jet mass window overlap
- Merged (resolved) SRs can overlap with resilved (merged) CRs

Orthogonalisation procedure:

- Run analysis cutflows to find active SRs
- Remove any merged SR events from the resolved SR
- Remove and resolved/merged CR events which overlap with the opposite merged/resolved SR
- If remaining overlap, calculate the DNN MCT scores and classify the event into VV SR and remove from Vh SR and vice versa

Event selection

Nikthef Event selection (simplified)

Selection	VV merged	Vh merged	<i>VV</i> resolved (not explored)	Vh resolved		
	0-lepton Selection					
Trigger	MET Trigger					
Lepton Multiplicity	0 "loose" Leptons					
$E_{\rm T}^{\rm miss}$	> 200 GeV		> 150 GeV			
S	> 10					
min[$\Delta \phi$ (jets, $E_{\rm T}^{\rm miss}$)]	> 0.2					
Jet Cleaning	Tight					
	Jet Selection					
Number of Jets	1 large-R jet		2 small- <i>R</i> jet			
Leading jet $p_{\rm T}$	> 300 GeV	> 250 GeV	> 45 GeV			
W/Z/h requirements	Tagger dependent mass and substructure cut	75 < m(J) < 145 GeV	W: 68 < m(jj) < 98 Z: 78 < m(jj) < 105	110 < m(jj) < 140		

Selection	VV merged	Vh merged	VV resolved	Vh resolved		
	1-lepton Selection					
Trigger	Single lepton or MET Trigger					
Lepton Multiplicity	1 "Tight" lepton and 0 "loose" leptons					
lepton $p_{\rm T}$	> 30 GeV					
$E_{\rm T}^{\rm miss}$	> 100 GeV		> 60 GeV			
$p_{\mathrm{T}}(W)$	> 200 GeV		> 75 GeV			
	Jet Selection					
Number of Jets	1 large- <i>R</i> jet		2 small- <i>R</i> jet			
Leading jet $p_{\rm T}$	> 300 GeV	> 250 GeV	> 45 GeV			
W/Z/h requirements	Tagger dependent mass and substructure cut	75 < m(J) < 145 GeV	W: 68 < m(jj) < 98 Z: 78 < $m(jj) < 105$	110 < m(jj) < 140		
	Topology Requirements					
$E_{\rm T}^{\rm miss}/p_{\rm T}(W)$	> 0.2 electron-only					
<i>b</i> -veto	No additional <i>b</i> -jet in event		No <i>b</i> -jet in $\Delta R(J, b) < 1.0$			
P	GGF:> 0.35					
Γ	VBF: > 0.25					
$\Delta \phi(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	-		< 1.5			
$\Delta \phi(j_1, j_2)$	-		< 1.5			
$\Delta \phi(\ell, j_1/j_2)$	-		> 1.0			
$\Delta \phi(\ell, j_1/j_2)$	_		> 1.0			

 $R = \frac{\min(p_{\mathrm{T}}(W_{lep}), p_{\mathrm{T}}(W/Z/h_{had}))}{m(VV/Vh)}$

Selection	VV merged	Vh merged	VV resolved	Vh resolved		
	2-lepton Selection					
Trigger	Dilepton					
Lepton Multiplicity	2 "loose" lepton and no additional					
Leading lepton $p_{\rm T}$	> 27 GeV					
Subleading lepton $p_{\rm T}$	> 25 GeV		> 20 GeV			
$m(\ell\ell)$	$83 < m_{ee} < 99 \text{GeV}$					
	$85.6 - 0.0117 p_{\rm T}(\ell \ell) < m_{\mu\mu} < 94.0 + 0.0185 p_{\rm T}(\ell \ell) {\rm GeV}$					
	Jet Selection					
Number of Jets	1 large- <i>R</i> jet		2 small- <i>R</i> jet			
Leading jet $p_{\rm T}$	> 300 GeV	> 250 GeV	> 45 GeV			
W/Z/h requirements	Tagger dependent mass and substructure cut	75 < m(J) < 145 GeV	<i>W</i> : $68 < m(jj) < 98$	100 < m(ii) < 145		
			Z: $78 < m(jj) < 105$	100 < m(jj) < 145		
	Topology Requirements					
R	GGF:> 0.35					
	VBF: > 0.25					

$$R = \frac{p_{\mathrm{T}}(\min(Z_{lep}), p_{\mathrm{T}}(W/Z/h_{had}))}{m(VV/Vh)}$$

New developments

Nikthef What is new wrt the round 1?

- Harmonisation between VV and Vh
- Improved physics object reconstruction:
 - New algorithms for Large-R and Small-R jets reconstruction
 - A new V-boson 3-variable tagger
 - Newer b-tadding algoritm
 - Improved V+jets modelling
 - Custom Multi-Class Classifier to enhance the separation between $V \rightarrow qq$ and $h \rightarrow bb$
- Introduced a VBF category in Vh channel for the first time

Nikthef VBF RNN tagger

- RNN tagger to classify VBF events from ggF/DY
- Was used in round 1 VV search, now extended to Vh channel

RNN

- Takes 4-momenta of the small-R jets
- Removes small-R jets from hadronic boson candidate
- Up to 2 remaining jets are chosen as input
- If no small-R jets left \rightarrow ggF/DY region
- If RNN score < 0.8 → ggF/DY region otherwise VBF region

Expected sensitivity

- Simultaneous binned likelihood fit across all signal and control regions
- 2 fit setups:
 - *WZ*+*Vh*
 - *WW*+*ZZ*+*Vh*
- Final observable:
 - 0-lepton: diboson transverse mass
 - 1-,2-lepton: diboson invariant mass
- Major backgrounds (W+jets, Z+jets, $t\bar{t}$) are freely floating:
 - Shape is from Monte-Carlo simulation
 - Normalisation is from data in CRs
- Minor backgrounds use shape/normalisation from theory predictions

UNIVERSITEIT VAN AMSTERDAM

Nikthef Expected sensitivity

- Significant improvement wrt Round 1
- Pseudo data used to estimate sensitivity
- Statistical + experimental systematic uncertainties are included
- ≻To do: add theory uncertainties and finalize fit strategy

NNV meeting - 08/11/2024

E. Cherepanova