Nikhef

Preliminary results of v_n measurements in Run 3 with ALICE NNV section for (astro)particle physics fall meeting

Noor Koster 08-11-2024

- at the LHC

 Study formation and evolution by analysis of final state particles detected with ALICE Preliminary results of v_n measurements in Run 3 with ALICE

Create strongly interacting plasma of deconfined quarks and gluons by colliding heavy-ions

Probing the Quark Gluon Plasma

- Anisotropic flow is one of the key observables of the QGP ullet
- In a strongly interacting medium initial state anisotropies • are translated to final state anisotropies in momentum space
- Sensitive to transport properties like η/s
- Temperature dependence of η/s can be studied by energy dependence of collective flow
- Constraining this fundamental property of the QGP ulletimportant for the development of hydrodynamical models
- Necessary to further explore the phase diagram of QCD • and find connections between HIC and the EoS of neutron stars

Probing the Quark Gluon Plasma

- Final state momentum anisotropy measured through anisotropic azimuthal distribution of charged hadrons
- Elliptic flow most dominant due to almond shape overlap zone of nuclei

- Besides elliptic flow also higher orders present from event-by-event fluctuations
- Fourier expansion of azimuthal distribution of final state particles

$$-\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos\left[n\left(\varphi - \Psi_n\right)\right]$$

• v_n are the harmonics of the distribution and quantify flow

$$v_n = \left\langle \cos\left[n\left(\varphi - \Psi_n\right)\right] \right\rangle$$

- Ψ_n cannot be measured directly in experiments!!
- Need to be estimated from experimental observables like multi-particle correlations

Preliminary results of v_n measurements in Run 3 with ALICE

Multi-particle azimuthal correlations

- Instead of using $v_n = \langle \cos[n(\varphi \Psi_n)] \rangle$, look at the correlations between 2 (or m>2) particles
- $\langle \langle \cos \left[n(\varphi_1 \varphi_2) \right] \rangle \rangle = \langle \langle e^{in(\varphi_1 \varphi_2)} \rangle \rangle$ $= \langle \langle e^{in(\varphi_1 - \Psi_n - (\varphi_2 - \Psi_n))} \rangle \rangle$ $= \langle \langle e^{in(\varphi_1 - \Psi_n)} \rangle \langle e^{-in(\varphi_2 - \Psi_n)} \rangle + \delta_n \rangle$ $=\langle v_n^2 + \delta_n \rangle$
- If only correlations from collective would be present, $\delta_n = 0$ and our lives would be (more) easy!!
- We don't live in a perfect world... Correlations can arise from different processes
 - **Physical:** Resonance decays, jets
 - **Detector:** Track splitting
 - **Computational:** auto correlations

 $v_2 \neq 0 \quad v_2\{2\} \neq 0$

(c)

 $v_2 = 0 \quad v_2\{2\} = 0$

 $v_2 = 0 \quad v_2\{2\} \neq 0$

Preliminary results of v_n measurements in Run 3 with ALICE

Multi-particle azimuthal correlations

 $v_n \{m > 2\}$ in Pb-Pb collisions δ_n has been found to be negligible

Preliminary results of v_n measurements in Run 3 with ALICE

• For 2-particle correlations a separation in η is used to suppress non-flow and for

Multi-particle azimuthal correlations

- We thus measure $\langle \langle \cos \left[n(\varphi_1 \varphi_2) \right] \rangle \rangle = \langle v_n^2 + \delta_n \rangle$
- Due to event-by-event fluctuations (σ_n), $\langle v_n^k \rangle \neq \langle v_n \rangle^k$

• When
$$\sigma_n \ll \langle v_n \rangle$$

$$\begin{split} v_2\{2\} &\approx \left\langle v_2 \right\rangle + \frac{1}{2} \frac{\sigma^2}{\left\langle v_2 \right\rangle}, \\ v_2\{4,6,8\} &\approx \left\langle v_2 \right\rangle - \frac{1}{2} \frac{\sigma^2}{\left\langle v_2 \right\rangle}. \end{split}$$

Difference clearly observed with high precision in Run 1 and 2

Higher order harmonics

- Higher order harmonics $v_{n>2}$ {2} are also studied in high precision
- With $\Delta \eta > 1$ to suppress non-flow contributions
- For n > 2 event-by-event fluctuations are most dominant in v_n
- Clear scaling of $v_2 > v_3 > v_4 > v_5 > v_6$
- Extend measurements with new Run 3 data
- Measurements of inclusive $v_n\{m\}$ relatively straightforward to perform since we 'only' need the azimuthal distribution of unidentified charged hadrons

Preliminary results of v_n measurements in Run 3 with ALICE

Upgrade to Run 3

- Slightly higher energy of $\sqrt{s_{\rm NN}} = 5.36$ TeV in Pb-Pb
- Increased interaction rates and luminosity
- Highly increased statistics compared to previous runs
- New challenges to process and reconstruct events
- New online-offline analysis framework developed for Run 3 called O^2 -Physics
- Use $v_n\{m\}$ measurements to compare to previous results as a first test and validation of the new detector setup and results

Acceptance and Efficiency corrections

- Correct data for non-uniform detector acceptance (NUA) and reconstruction efficiency (NUE)
 - NUA weights generated with experimental data \bullet
 - NUE from Monte Carlo event simulations \bullet

Preliminary Results

- Observe same scaling of $v_2 > v_3 > v_4$ and $v_2\{2\} > v_2\{4\} \approx v_2\{6\} \approx v_2\{8\}$
- Suppression of non-flow with η gap visible for $v_2\{2\}$

Preliminary results of v_n measurements in Run 3 with ALICE

 $v_{2}^{2} > v_{2}^{2}^{4} \approx v_{2}^{6} \approx v_{2}^{8}$ $v_{2}^{2}^{2}$

Preliminary Results Differential flow

• Look at transverse momentum dependence in different centrality bins

Preliminary Results Differential flow

Centrality dependence clearly visible in differential flow

Preliminary results of v_n measurements in Run 3 with ALICE

Conclusion and outlook

- Exciting times are ahead: Second heavy-ion run is starting up!
- Improve event and track selections
- Comparison with lower energies to probe energy dependence of v_n

Conclusion and outlook

- Exciting times are ahead: Second heavy-ion run is starting up!
- Improve event and track selections
- Comparison with lower energies to probe energy dependence of v_n

Thank you!

Preliminary results of v_n measurements in Run 3 with ALICE

Questions?

Acceptance

Preliminary results of v_n measurements in Run 3 with ALICE