

Maastricht University

TrackHHL: LHCb Track Reconstruction using novel quantum algorithms

XENOFON CHIOTOPOULOS

xenofon.chiotopoulos@maastrichtuniversity.nl

NNV Section for (astro)particle physics fall meeting

LHCb Experiment at CERN

Run / Event: 299027 / 9935955257

Data recorded: 2024-06-22 23:33:36 GMT

LHCb Experiment at CERN

Run / Event: 299027 / 9935955257

Data recorded: 2024-06-22 23:33:36 GMT

R HELM

Hits in the VELO

Creator: Davide Nicotra

Xenofon Chiotopoulos

Tracks in the VELO

Creator: Davide Nicotra

Xenofon Chiotopoulos

New Quantum Computing algorithm for Track Reconstruction

Translation For Quantum Advantage [arXiv:2308.00619] [JINST]

Segment $[S_{ab}]$: combination of hit a and hit b \rightarrow in consecutive layers - for now

NNV (astro)particle physics fall meeting

Translation For Quantum Advantage

$$\mathcal{H}(\mathbf{S}) = -\frac{1}{2} \left[\sum_{abc} f(\theta_{abc}, \varepsilon) S_{ab} S_{bc} + \gamma \sum_{ab} S_{ab}^2 + \delta \sum_{ab} (1 - 2S_{ab})^2 \right]$$
(a)
(b)
(c)
 $f(\theta_{abc}, \varepsilon) = \begin{cases} 1 & \text{if } \cos \theta_{abc} \ge 1 - \varepsilon \\ 0 & \text{otherwise} \end{cases}$

(a) Angular term: assigns values for straight doublets
(b) Regularization term: makes the spectrum of A positive
(c) Gap term: ensures gap in the solution spectrum

Xenofon Chiotopoulos

Translation For Quantum Advantage

$$\mathcal{H}(\mathbf{S}) = -\frac{1}{2} \left[\sum_{abc} f(\theta_{abc}, \varepsilon) S_{ab} S_{bc} + \gamma \sum_{ab} S_{ab}^2 + \delta \sum_{ab} (1 - 2S_{ab})^2 \right]$$

Relaxation of binary S values allows $\nabla_S H = 0$

-AS + b = 0

$$AS = b$$

NNV (astro)particle physics fall meeting

Translation For Quantum Advantage 10 $\mathcal{H}(\mathbf{S}) = -\frac{1}{2} \left[\sum_{abc} f(\theta_{abc}, \varepsilon) S_{ab} S_{bc} + \gamma \sum_{ab} S_{ab}^2 + \delta \sum_{ab} (1 - 2S_{ab})^2 \right]$

$$AS = b$$
$$A = b$$
$$b = b$$

Most Trivial Tracking Scenario

Xenofon Chiotopoulos

NNV (astro)particle physics fall meeting

Solving it Classically

Creator: Davide Nicotra

Xenofon Chiotopoulos

Solving it Classically

Tracking performance on LHCb simulated events

Benchmarked on a Classical Equivalent of the Quantum algorithm [arXiv:2308.00619], [JINST]

Xenofon Chiotopoulos

NNV (astro)particle physics fall meeting

HHL(Harrow– Hassidim–Lloyd) algorithm

AS = b

Classical Complexity: $O(n^2)^*$ HHL Complexity: $O(\kappa^2 \log n)$

▷ n = input matrix size

> k = condition number

System size scales with:
▶ n = p²×Average Hits Per Track
▶ p = particles in detector

n	Qubits	Depth	2-qubit gates
8	8	$12 \ 071$	5538
12	10	$185 \ 817$	93 213
18	12	$1 \ 665 \ 771$	834 417
27	12	$1 \ 714 \ 534$	840 780
32	12	$901 \ 255$	442 694
48	14	$14 \ 197 \ 046$	7 110 044
50	14	$14 \ 515 \ 229$	7 107 317

HHL(Harrow– Hassidim–Lloyd) algorithm

A	S	=	b

Current Best IBM: ~3000 gates

n	Qubits	Depth	2-qubit gates
8	8	12 071	5538
12	10	$185 \ 817$	93 213
18	12	$1 \ 665 \ 771$	834 417
27	12	$1 \ 714 \ 534$	840 780
32	12	$901 \ 255$	442 694
48	14	$14 \ 197 \ 046$	7 110 044
50	14	$14 \ 515 \ 229$	$7 \ 107 \ 317$

System size scales with:
▶ n = p²×Average Hits Per Track
▶ p = particles in detector

Challenges with HHL

1-Bit Phase Estimation

Xenofon Chiotopoulos

NNV (astro)particle physics fall meeting

08/11/24

N-Bit QPE

1-Bit QPE

Xenofon Chiotopoulos

Trying to solve our Phase Estimation Problem

NNV (astro)particle physics fall meeting

Output Problem

21

 Event with 1500 particles needs 10^{4.8} samples for 1-Bit

 Event with 1500 particles needs 10^{8.6} samples for HHL

▶ M = p×Average Hits Per Track *▶* N = p²×Average Hits Per Track

Xenofon Chiotopoulos

n	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸	10 ⁹
Particles	1	5	15	50	158	500	1581	5000	15811

*5 Hits Per Track Assumption

Xenofon Chiotopoulos

NNV (astro)particle physics fall meeting

Qubit Reduction

22

> $2 \log_2 N + 2$ qubits for HHL > $\log_2 N + 3$ qubits for 1-Bit HHL

Solving our Phase Estimation Problem 1-Bit Phase Estimation

n	Qubits	${f Qubits}^*$	Depth	\mathbf{Depth}^*	2-qubit gates		2 -qubit gates*
8	8	6	12 071	371		5538	219
12	10	7	185 817	2005		93 213	$1 \ 264$
18	12	8	$1 \ 665 \ 771$	7 732		834 417	4 609
27	12	8	1 714 534	$14 \ 512$		840 780	8 780
32	12	8	901 255	1 229		442 694	749
48	14	9	14 197 046	$5\ 439$		$7 \ 110 \ 044$	$3 \ 429$
50	14	9	$14 \ 515 \ 229$	24 172		7 107 317	14 804

Achieved through circuit optimization and 1-bit phase estimation

* Represents the 1-Bit Phase estimation results

Xenofon Chiotopoulos

NNV (astro)particle physics fall meeting

24

Largest Simulated Event

Xenofon Chiotopoulos

Largest Simulated Event Matrix

25

0.0

3.0

2.5

2.0

1.5

1.0

0.5

-0.5

1.0

08/11/24

Xenofon Chiotopoulos

08/11/24

Xenofon Chiotopoulos

Xenofon Chiotopoulos

08/11/24

Benefits of 1-Bit HHL

Upto a ×10,000 reduction in circuit depth

- Pre-processing inside quantum circuit, logarithmic reduction in samples needed for reconstruction
- Reduction in qubits needed (where N is matrix dimension):
 - ▶ $2 \log_2 N + 2$ qubits originally
 - ▶ $\log_2 N + 3$ qubits for 1-Bit HHL

Conclusions

- Matrix inversion track solvers have a good performance classically, HHL quantum version also shows good results
- Adopting 1-bit phase estimation HHL significantly improves feasibility in qubits, circuit depth and read-out

Future Work

- Take advantage of sparsity structures
- > Encoding geometry information into the Hamiltonian
- Benchmarking the Primary Vertex finding on data with PV information

Backup Slides

NNV (astro)particle physics fall meeting

Further Solving our Read-Out Problem

Time Evolution

Time Evolution Operator

 $\overline{|\psi(t)\rangle} = U(t)\overline{|\psi(0)\rangle} = e^{-iHt/\hbar}\overline{|\psi(0)\rangle}$

Via Trotterization

Suzuki Trotter Decomposition

- $\blacktriangleright H = H_A + H_B \text{ and } U(t) = e^{-iHt/\hbar}$
- ▶ If $[H_A, H_B] \neq 0$ computing $e^{-i(H_A + H_B)t/\hbar}$ is very expensive
- So, we use the Suzuki-Trotter decomposition to do time evolution
- $\blacktriangleright e^{-i(H_A + H_B)t/\hbar} \approx (e^{-iH_A\Delta t}e^{-iH_B\Delta t})^N$
- where $\Delta t = t/N$ and as $N \to \infty$ the approximation becomes exact.

08/11/24

36

Xenofon Chiotopoulos

Solving the Readout Problem: 37 Reconstruct the Primary Vertices and re-find all tracks

08/11/24

38

Xenofon Chiotopoulos

The Hough Transform

0

η-axis

-2

-4

Hough Transform PV: 0.42 mm

Δ

NNV (astro)particle physics fall meeting