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Hits in the VELO 4

Creator: Davide Nicotra  



Tracks in the VELO 5

Particle “tracks”
Creator: Davide Nicotra  



New Quantum Computing 
algorithm for Track 
Reconstruction
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Translation For Quantum Advantage
[arXiv:2308.00619] [JINST]

Segment [Sab]: combination of hit a and hit b
→ in consecutive layers - for now
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https://arxiv.org/abs/2308.00619
https://iopscience.iop.org/article/10.1088/1748-0221/18/11/P11028


Translation For Quantum Advantage

   (a)                                   (b)               (c)

•(a) Angular term: assigns values for straight doublets
•(b) Regularization term: makes the spectrum of A positive
•(c) Gap term: ensures gap in the solution spectrum
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Translation For Quantum Advantage 9

𝐴𝑆 = 𝑏

𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑖𝑛𝑎𝑟𝑦 𝑆 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑙𝑙𝑜𝑤𝑠
∇!𝐻 = 0

−𝐴𝑆 + 𝑏 = 0



Translation For Quantum Advantage 10

𝐴𝑆 = 𝑏
𝐴 =
𝑏 =



Most Trivial Tracking Scenario 11

𝑆! 𝑆" 𝑆# 𝑆$ 𝑆% 𝑆& 𝑆' 𝑆(



Solving it Classically 12

Particle “tracks”
Creator: Davide Nicotra  
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Benchmarked on a Classical Equivalent of the Quantum algorithm [arXiv:2308.00619], [JINST] 

Solving it Classically

𝑒)*+, =
𝑁-./01++,0/

𝑁-./233

𝑒,44 =
𝑁-./01++,0/

𝑁-./
5,6

𝜖/+207 =
𝑁/+20701++

𝑁5,6200

https://arxiv.org/abs/2308.00619
https://iopscience.iop.org/article/10.1088/1748-0221/18/11/P11028


HHL(Harrow–
Hassidim–Lloyd) 
algorithm
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𝐴𝑆 = 𝑏

Classical Complexity: 𝒪 𝑛" *

HHL Complexity: 𝒪 𝜅" log 𝑛

Ø 𝑛 = 𝑖𝑛𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒

Ø 𝑘 = 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

System size scales with:
Ø n = 𝑝"×𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑖𝑡𝑠 𝑃𝑒𝑟 𝑇𝑟𝑎𝑐𝑘
Ø 𝑝 = 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟



HHL(Harrow–
Hassidim–Lloyd) 
algorithm

15

𝐴𝑆 = 𝑏

Classical Complexity: 𝒪(𝑛")*

HHL Complexity: 𝒪 𝜅" log 𝑛

Ø 𝑛 = 𝑖𝑛𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒

Ø 𝑘 = 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

System size scales with:
Ø n = 𝑝"×𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑖𝑡𝑠 𝑃𝑒𝑟 𝑇𝑟𝑎𝑐𝑘
Ø 𝑝 = 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

Current Best IBM:
   ~3000 gates
 



Challenges 
with HHL
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1-Bit Phase 
Estimation 

17



183-Bit Phase Estimation

1-Bit Phase Estimation

8 possible phase discretization

Binary phase discretization 
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N-Bit QPE 

1-Bit QPE 



20Trying to solve our Phase 
Estimation Problem



Output Problem 21

Ø 𝑀 = 𝑝×𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑖𝑡𝑠 𝑃𝑒𝑟 𝑇𝑟𝑎𝑐𝑘
Ø 𝑁 = 𝑝"×𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑖𝑡𝑠 𝑃𝑒𝑟 𝑇𝑟𝑎𝑐𝑘

Ø Event with 1500 
particles needs 10$.(	
samples for 1-Bit     

Ø Event with 1500 
particles needs 10(.&	
samples for HHL     



Qubit 
Reduction

22

n 𝟏𝟎𝟏 𝟏𝟎𝟐 𝟏𝟎𝟑 𝟏𝟎𝟒 𝟏𝟎𝟓 𝟏𝟎𝟔 𝟏𝟎𝟕 𝟏𝟎𝟖 𝟏𝟎𝟗

Particles 1 5 15 50 158 500 1581 5000 15811

*5 Hits Per Track Assumption

Ø 2 log"𝑁 + 2 qubits for HHL
Ø log"𝑁 + 3 qubits for 1-Bit HHL



Solving our Phase Estimation Problem
1-Bit Phase Estimation
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Achieved through circuit optimization and 1-bit phase estimation

* Represents the 1-Bit Phase estimation results
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Largest Simulated Event



Largest 
Simulated 
Event
Matrix
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Benefits of 1-Bit HHL

u Upto a ×10,000 reduction in circuit depth

u Pre-processing inside quantum circuit, 
logarithmic reduction in samples needed for 
reconstruction 

u Reduction in qubits needed (where N is matrix 
dimension):
u 2 log"𝑁 + 2 qubits originally
u log"𝑁 + 3 qubits for 1-Bit HHL
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Conclusions 31

Ø Matrix inversion track solvers have a good performance 
classically, HHL quantum version also shows good results 

Ø Adopting 1-bit phase estimation HHL significantly 
improves feasibility in qubits, circuit depth and read-out

Ø Take advantage of sparsity structures

Ø Encoding geometry information into the Hamiltonian

Ø Benchmarking the Primary Vertex finding on data with 
PV information

Future Work



Backup Slides
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Further Solving 
our Read-Out 

Problem
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Time Evolution 34

𝐻| ⟩𝜓 𝑡 = 𝑖ℏ
𝜕
𝜕𝑡
| ⟩𝜓 𝑡

⟩𝜓 𝑡 = 𝑈 𝑡 ⟩𝜓 0 = 𝑒&'()/ℏ| ⟩𝜓 0

Time Evolution Operator

Via Trotterization



Suzuki Trotter 
Decomposition

u 𝐻 = 𝐻! + 𝐻"	𝑎𝑛𝑑	𝑈 𝑡 	= 𝑒#$%&/ℏ

u If	 𝐻!, 𝐻" ≠ 0	computing	𝑒#$(%!*%")&/ℏ	is	very	
expensive

u So,	we	use	the	Suzuki-Trotter	decomposition	to	do	
time	evolution

u 𝑒#$(%!*%")&/ℏ ≈ (𝑒#$%!∆&𝑒#$%"∆&)-

u where ∆𝑡 = ⁄& - and as	𝑁 → ∞ the	approximation	
becomes	exact.
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37Solving the Readout Problem: 
Reconstruct the Primary Vertices and re-find all tracks
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The Hough Transform 39

𝜂 ≔ − ln tan
𝜃
2


