

Table of Contents

Motivation

- The Higgs Boson in the Standard Model **Di-Higgs in ATLAS**
 - Quick look at ATLAS
 - DiHiggs production and decay modes

The $HH \rightarrow \bar{b}b\gamma\gamma$ channel

- Analysis strategy
- Kinematic Fit

Preliminary results

NNV section for (astro)particle physics fall meeting

Alexandra Sidley

The Higgs Boson in the Standard Model

- The Standard Model (SM) thoroughly explored
- Higgs sector at the core
- Higgs discovery in 2012 at the LHC
- Remains a mystery

NNV section for (astro)particle physics fall meeting

Fermion masses & mixing

W,Z masses & Higgs

 $+ |D_{g}|^{2} - V(\phi)$

potential

Alexandra Sidley

The Higgs Boson in the Standard Model

SM predicts clear relationship between mass and coupling to Higgs

• What's missing? The Higgs Boson selfcoupling (λ)

NNV section for (astro)particle physics fall meeting

Nature 607, 52-59 (2022)

Alexandra Sidley

The Higgs Boson in the Standard Model

The Higgs potential *(i)* is closely linked to open questions in particle

Nik

hef

Measuring the Higgs self-interaction (λ) is crucial to understanding the Higgs potential

The ATLAS experiment

Large general purpose detector on the LHC at CERN

Bunches of protons are collided at $\sqrt{s} = 13.6 TeV$ Produced 9 million Higgs bosons during Run 2 period

NNV section for (astro)particle physics fall meeting

Alexandra Sidley

DiHiggs in ATLAS

The Higgs self-coupling λ can be probed in the ATLAS experiment for DiHiggs (HH) production

Primary HH production modes

NNV section for (astro)particle physics fall meeting

Negative interference

Vector boson fusion (VBF)

Alexandra Sidley

DiHiggs in ATLAS

Primary DiHiggs decay modes

Clean signature

Large branching ratio

	bb	ww	ττ	ZZ	ΥY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

NNV section for (astro)particle physics fall meeting

Golden channels: $HH \rightarrow bbbb, HH \rightarrow b\bar{b}\tau\tau$ and $\underline{HH} \rightarrow b\bar{b}\gamma\gamma$

Alexandra Sidley

3. The $HH \rightarrow \bar{b}b\gamma\gamma$ Channel

The $HH \rightarrow \bar{b}b\gamma\gamma$ channel

Aims:

- Constrain the diHiggs production signal strength ($\mu_{HH} = \frac{\sim}{S_{SM}}$)
- Constrain κ_{λ}

Current analysis uses ATLAS full Run 2 and partial Run 3 data

NNV section for (astro)particle physics fall meeting

Alexandra Sidley

Analysis strategy

Preselection

Narrow down the data

Categorisation

Split up the events

NNV section for (astro)particle physics fall meeting

Modelling

Determine the shape of signal and background

Likelihood fit

Fit the data to extract signal strength

Alexandra Sidley

Preselection

How do we narrow down the data for $HH \rightarrow bb\gamma\gamma$ events?

$H \rightarrow \gamma \gamma$ selection

- 2 energetic photons with combined mass around the Higgs mass
- $H \rightarrow bb$ selection
 - 2 b-jets passing the b-tagging working point
 - Using brand new GNN-based b-tagger with 4x better background rejection wrt Run 2 legacy

NNV section for (astro)particle physics fall meeting

Alexandra Sidley

Preselection

What are we left with after pre-selection? Signal

NNV section for (astro)particle physics fall meeting

Background

Event categorisation

In the Standard Model scenario, $\kappa_{\lambda} = \frac{\lambda}{\lambda_{SM}} = 1$

We want our search to be sensitive to SM as well as BSM scenarios

Define distinct analysis regions to be sensitive to both SM HH production and variations in κ_{λ}

NNV section for (astro)particle physics fall meeting

Alexandra Sidley

Event categorisation

Use the invariant mass of the diHiggs final state $(m^*_{b\bar{b}\gamma\gamma})$ to define analysis regions High-mass (HM): $m^*_{b\bar{b}\gamma\gamma} \ge 350 \text{ GeV}$ Sensitive to SM-like κ_{λ}

Low-mass (LM): $m^*_{b\bar{b}\gamma\gamma} < 350 \ GeV$ Sensitive to BSM-like κ_{λ}

- Train boosted decision tree (BDT) in both
- analysis categories based on score

Nik hef

NNV section for (astro)particle physics fall meeting

Kinematic Fit

- •Invariant mass of the bb-system ($m_{b\bar{b}}$) found to be most important variable in BDT
- • $m_{b\bar{b}}$ has bad resolution (~20%, compare
- •Improving the $m_{b\bar{b}}$ resolution can improve BDT performance

NNV section for (astro)particle physics fall meeting

ed to
$$m_{\gamma\gamma} \sim 1\%$$
)

Kinematic Fit

- Exploit good $m_{\gamma\gamma}$ resolution, and use momentum conservation
- Fit a likelihood function per event

$$-2\log(\mathcal{L}) = \sum_{j=jets} \left[-2\log\left[f_E\left(\frac{E_{fit,j} - E_{Event,j}}{E_{fit,j}}\right)\right] - 2\log\left[f_{p_T}\left(\frac{pT_{fit,j} - pT_{Event,j}}{pT_{fit,j}}\right)\right] \right] + \sum_{j=photons} -2\log\left[f_2\left(\frac{E_{fit,j} - E_{Event,j}}{E_{fit,j}}\right)\right] - 2\lambda\log\left[f_2(p_X^{HH})\right] - 2\lambda\log\left[f_2(p_Y^{HH})\right] \right] + \sum_{j=photons} -2\log\left[f_2\left(\frac{E_{fit,j} - E_{Event,j}}{E_{fit,j}}\right)\right] - 2\lambda\log\left[f_2(p_X^{HH})\right] - 2\lambda\log\left[f_2(p_X^{HH})\right] - 2\lambda\log\left[f_2(p_X^{HH})\right] \right] + \sum_{j=photons} -2\log\left[f_2\left(\frac{E_{fit,j} - E_{Event,j}}{E_{fit,j}}\right)\right] - 2\lambda\log\left[f_2(p_X^{HH})\right] - 2\lambda\log\left[f_2(p_X^{HH})\right] \right] + \sum_{j=photons} -2\log\left[f_2\left(\frac{E_{fit,j} - E_{Event,j}}{E_{fit,j}}\right)\right] - 2\lambda\log\left[f_2(p_X^{HH})\right] - 2\lambda\log\left[f_2(p_X^{HH})\right] \right] + \sum_{j=photons} -2\log\left[f_2\left(\frac{E_{fit,j} - E_{Event,j}}{E_{fit,j}}\right)\right] - 2\lambda\log\left[f_2(p_X^{HH})\right] - 2\lambda\log\left[f_2(p_X^{HH})\right] + \sum_{j=photons} -2\log\left[f_2\left(\frac{E_{fit,j} - E_{Event,j}}{E_{fit,j}}\right)\right] - 2\lambda\log\left[f_2(p_X^{HH})\right] + \sum_{j=photons} -2\log\left[f_2\left(\frac{E_{fit,j} - E_{Event,j}}{E_{fit,j}}\right)\right] - 2\lambda\log\left[f_2(p_X^{HH})\right] + \sum_{j=photons} -2\log\left[f_2\left(\frac{E_{fit,j} - E_{Event,j}}{E_{fit,j}}\right)\right] + \sum_{j=photons} -2\log\left[f_2\left(\frac{E_{Fit,j} - E_{Fit,j}}{E_{Fit,j}}\right)\right] + \sum_{j=photons} -2\log\left[f_2\left(\frac{E_{Fit,j$$

 $m_{b\bar{b}}$ reconstructed from Kinematic Fitted 4-momentum should have better resolution

NNV section for (astro)particle physics fall meeting

Alexandra Sidley

Kinematic Fit

mbb distribution with Kinematic Fit, BJetCalibration, and no correction

Nik hef

NNV section for (astro)particle physics fall meeting

The Kinematic Fit improves the m_{bb} resolution by 26.9% wrt no correction

Alexandra Sidley

Modelling and fit

Signal and background must be modelled in order to perform a likelihood fit to the diphoton mass distribution $(m_{\gamma\gamma})$

Nil

NNV section for (astro)particle physics fall meeting

November 2024

Alexandra Sidley

Disclaimers

- These results are preliminary and work in progress
- Expected limits based on stat-only likelihood fit
- Final analysis strategy not fixed R&D for potential improvements ongoing

NNV section for (astro)particle physics fall meeting

Alexandra Sidley

DiHiggs signal strength (μ_{HH}) expected upper limit and κ_{λ} constraints

We do not yet have the sensitivity to observe diHiggs or measure κ_{λ} , but we can set limits on both

Analysis	Expected upper limit	Significance	
Run 2 legacy	4.86	0.54	
Current Analysis	3.35	0.77	
	Current ar ~31% ove sensitivity	Current analysis improves ~31% over legacy in μ_{HH} sensitivity	

NNV section for (astro)particle physics fall meeting

Legacy: $\kappa_{\lambda} \in [-2.8, 7.8]$ Current: $\kappa_{\lambda} \in [-2.2, 7.3]$

Conclusion and outlook

- $HH \rightarrow \bar{b}b\gamma\gamma$ analysis aims to constrain μ_{HH} and κ_{λ}
- First results are already show improvement over the Run 2 legacy analysis
- R&D will boost sensitivity even further
- Not so distant future: full Run 3 data and then HL-LHC bring us closer to observing diHiggs

NNV section for (astro)particle physics fall meeting

Alexandra Sidley

Backup

Nik hef

NNV section for (astro)particle physics fall meeting

Alexandra Sidley

Backup

Expected limits legacy analysis @ 95% CL: $\kappa_{\lambda} \in [-2.8, 7.8]$

NNV section for (astro)particle physics fall meeting

Alexandra Sidley

Backup

NNV section for (astro)particle physics fall meeting

November 2024

Alexandra Sidley

