

The $HH\to bby\gamma$ channel *HH* → *b*¯*bγγ*

- The Higgs Boson in the Standard Model Di-Higgs in ATLAS
	- Quick look at ATLAS
	- DiHiggs production and decay modes

- Analysis strategy
- Kinematic Fit

Preliminary results

NNV section for (astro)particle physics fall meeting Markandra Sidley November 2024 2

Table of Contents

Motivation

- The Standard Model (SM) thoroughly explored
- **Higgs sector** at the core
- Higgs discovery in 2012 at the LHC
- Remains a mystery

NNV section for (astro)particle physics fall meeting Malexandra Sidley November 2024 4

The Higgs Boson in the Standard Model

Fermion masses & mixing

W,Z masses & Higgs potential

 $+|D_x \rho|^2 - \vee(\phi)$

• SM predicts clear relationship between mass and coupling to Higgs

• What's missing? **The Higgs Boson selfcoupling (***λ***)**

The Higgs Boson in the Standard Model

[Nature](https://www.nature.com/articles/s41586-022-04893-w) 607, 52–59 (2022)

^λ ^λ

NNV section for (astro)particle physics fall meeting Market Alexandra Sidley November 2024 5

Measuring the Higgs self-interaction (λ **) is crucial to understanding the Higgs potential**

NNV section for (astro)particle physics fall meeting Market Alexandra Sidley November 2024 6

The Higgs Boson in the Standard Model

The Higgs potential $W\gg$ is closely linked to open questions in particle

-
-
-

hef

Nik

Large general purpose detector on the LHC at CERN

Bunches of protons are collided at \sqrt{s} = 13.6 TeV Produced 9 million Higgs bosons during Run 2 period

NNV section for (astro)particle physics fall meeting Malexandra Sidley November 2024 8

The ATLAS experiment

The Higgs self-coupling λ can be probed in the ATLAS experiment for DiHiggs (HH) production

Primary HH **production modes**

DiHiggs in ATLAS

NNV section for (astro)particle physics fall meeting Malexandra Sidley November 2024 9

Negative interference

Vector boson fusion (VBF)

Primary DiHiggs **decay modes**

DiHiggs in ATLAS

Large branching ratio

NNV section for (astro)particle physics fall meeting Mexandra Sidley November 2024 10

Clean signature

Golden channels: $HH \rightarrow bbbb$ *, HH* $\rightarrow b\bar{b}\tau\tau$ and *HH* → *bb*¯*γγ*

3. The *HH* → *bbγγ* Channel

The $HH \rightarrow \bar{b}b\gamma\gamma$ channel

Aims:

- Constrain the diHiggs production signal $\text{strength}~(\mu_{HH} = \frac{1}{\sqrt{2}})$ *S* S_{SM}
- Constrain *κλ*

Current analysis uses ATLAS full Run 2 and partial Run 3 data

NNV section for (astro)particle physics fall meeting Market Alexandra Sidley November 2024 12

Preselection

Narrow down the data

Categorisation

Split up the events

NNV section for (astro)particle physics fall meeting Market Alexandra Sidley November 2024 13

Analysis strategy

Modelling

Determine the shape of signal and background

Likelihood fit

Fit the data to extract signal strength

How do we narrow down the data for $HH \rightarrow bby\gamma$ events? *HH* → *bb*¯*γγ*

$H \rightarrow \gamma \gamma$ selection

- ‣ 2 energetic photons with combined mass around the Higgs mass
- $H \rightarrow bb$ selection
	- ‣ 2 b-jets passing the b-tagging working point
	- ‣ Using brand new GNN-based b-tagger with 4x better background rejection wrt Run 2 legacy

NNV section for (astro)particle physics fall meeting Malexandra Sidley November 2024 14

Preselection

What are we left with after pre-selection? **Signal**

Preselection

NNV section for (astro)particle physics fall meeting Market Alexandra Sidley November 2024 15

Background

λ $= 1$

In the Standard Model scenario, $κ_{λ} =$ *λSM*

We want our search to be sensitive to SM as well as BSM scenarios

Define distinct analysis regions to be sensitive to both SM HH production and variations in *κλ*

NNV section for (astro)particle physics fall meeting Market Alexandra Sidley November 2024 16

Event categorisation

- Use the invariant mass of the diHiggs final state $(m^*_{\bar{b}\bar{b}\gamma\gamma})$ to define analysis regions • **High-mass (HM)**: *m** Sensitive to SM-like $κ_{λ}$ *bb*¯*γγ* ≥ 350 *GeV*
- **Low-mass (LM)**: *m** Sensitive to BSM-like $κ_{λ}$ *bb*¯*γγ* < 350 *GeV*
- Train boosted decision tree (BDT) in both
- **• 7 analysis categories** based on score

Nikhef

NNV section for (astro)particle physics fall meeting Malexandra Sidley November 2024 17

bb¯*γγ*

Event categorisation

- •Invariant mass of the bb-system $(m_{b\bar{b}})$ found to be most important variable in BDT
- •*m_{bb}* has bad resolution (~20%, compared to *m_{γγ}* ~1%)
- \cdot Improving the $m_{b\bar b}$ resolution can improve BDT performance

NNV section for (astro)particle physics fall meeting Malexandra Sidley November 2024 18

$$
ed to m_{\gamma\gamma} \sim 1\%
$$

Kinematic Fit

- Exploit good $m_{\gamma\gamma}$ resolution, and use **momentum conservation**
- Fit a likelihood function per event

$$
-2\log(\mathcal{L}) = \sum_{j=jets} \left[-2\log \left[f_E \left(\frac{E_{fit,j} - E_{Event,j}}{E_{fit,j}} \right) \right] - 2\log \left[f_{p_T} \left(\frac{p_{fit,j} - p_{Event,j}}{p_{fit,j}} \right) \right] \right] + \sum_{j=photons} -2\log \left[f_2 \left(\frac{E_{fit,j} - E_{Event,j}}{E_{fit,j}} \right) \right] - 2\lambda \log \left[f_2 \left(p_{X}^{HH} \right) \right] - 2\lambda \log \left[f_2 \left(p_{Y}^{HH} \right) \right]
$$

• $m_{b\bar{b}}$ reconstructed from Kinematic Fitted 4-momentum should have better resolution

NNV section for (astro)particle physics fall meeting Malexandra Sidley November 2024 19

Kinematic Fit

mbb distribution with Kinematic Fit, BJetCalibration, and no correction

Kinematic Fit

Nikhef

NNV section for (astro)particle physics fall meeting Market Alexandra Sidley November 2024

The Kinematic Fit improves the mbb resolution by **26.9%** wrt no correction

Signal and background must be modelled in order to perform a likelihood fit to the diphoton mass distribution ($m_{\gamma\gamma}$)

Ni

NNV section for (astro)particle physics fall meeting Market Alexandra Sidley November 2024 21

Modelling and fit

Disclaimers

- ‣ These results are preliminary and work in progress
- ‣ Expected limits based on stat-only likelihood fit
- ‣ Final analysis strategy not fixed R&D for potential improvements ongoing

NNV section for (astro)particle physics fall meeting Malexandra Sidley November 2024 23

DiHiggs signal strength (μ _{HH}) expected upper limit and κ _λ constraints

We do not yet have the sensitivity to observe diHiggs or measure κ_{λ} , but we can set limits on both

NNV section for (astro)particle physics fall meeting Malexandra Sidley November 2024 24

Legacy: Current: *κλ ϵ* [−2.8, 7.8] *κλ ϵ* [−2.2, 7.3]

Conclusion and outlook

- \rightarrow *HH* \rightarrow *bbγγ* analysis aims to constrain μ_{HH} and κ_{λ}
- First results are already show improvement over the Run 2 legacy analysis
- ‣ R&D will boost sensitivity even further
- ‣ Not so distant future: full Run 3 data and then HL-LHC bring us closer to observing diHiggs

NNV section for (astro)particle physics fall meeting Market Alexandra Sidley November 2024 25

Backup

Nikhef

NNV section for (astro)particle physics fall meeting Alexandra Sidley November 2024 26

Backup

NNV section for (astro)particle physics fall meeting Malexandra Sidley November 2024 27

Expected limits legacy analysis @ 95% CL: *κλ ϵ* [−2.8, 7.8]

Backup

NNV section for (astro)particle physics fall meeting Alexandra Sidley November 2024 28

