IMPROVING TIME RESOLUTION OF SILICON PIXEL DETECTORS USING CORRECTION ALGORITHMS

ANDREJ SARNATSKIY

NNV Fall meeting

(subatomic/astro) particle physics

university of groningen

MOTIVATION

- LHCb U1 (Upgrade 1) running successfully now
- During LS3 the LHC and other experiments^{1,2,3}
 get a high-luminosity upgrade.
- Higher luminosity → more collisions → more statistics
- LHCb next upgrade⁴ installed during LS4 (2034)

(Projected) Integrated luminosity of the LHCb⁶

LHCb

U2

MOTIVATION

• Silicon tracking: challenges to get data from chips to

reconstruction

- Decrease data rate (compression)
- Distinguish PV events during high pile-up and associate first hits in tracking (timing)
- Apply corrections as soon as possible for improved reconstruction

Courtesy: R. E. Geertsema

What corrections can be applied and where ?

VELO UPGRADE

- $\sigma_T \sim 30$ ps required
- Send data packages for every hit and process afterwards
 - Will be challenging due to bandwidth and resources
- ... or combine information on chip

DATA REDUCTION

- **Picopix:** Attempt to reduce data rate in the **ASICs**
 - Cluster hits and compile information into a single data package

- The alternative is to apply corrections down the road
 @ FPGA or GPU
 - Possibility of combining and correcting pixel hit to clusters
 - Firmware is flexible and adjustable

Particle hits 3 pixels

Event reconstruction

CORRECTIONS

• For $\sigma_T \sim 30$ ps additional effects need to be taken into account

and appropriate corrections are necessary

Timepix4 9,10

CORRECTIONS

• For $\sigma_T \sim 30$ ps additional effects need to be taken into account

and appropriate corrections are necessary.

- E.g. timewalk can be corrected.
 - Total charge collected is proportional to Time-over-Threshold (ToT).
 - ToT is correlated with timewalk.

LHCB UPGRADE 2 SIMULATION

- Using LHCb simulation to analyse impact of algorithms
- What is the **consequence** of clustering?
- What bit allocation is **optimal**?

STRUGGLE OF DUALITY

- Either run the LHCb simulation **once**, then do the analysis
- ... or implement **additional** code in the simulation

CLUSTERING INTERPOLATION

Three methods tested:

□ CoG:

charge weighted Center of Gravity

Binary:

Every pixel in cluster has equal weight.

Semi-binary:

$$(\bar{x}, \bar{y})_{sbin} = \frac{1}{M+S} \left(M \cdot (x, y)_{main} + S \cdot \sum_{i}^{spec} (x_i, y_i) \right)$$

 $(\bar{x}, \bar{y})_{bin} = \frac{1}{N} \sum_{i} (x_i, y_i)$

Pixel with highest collected charge is Main pixel (M), others

are Spectators (S). Different ratio's (M/S) tested.

- All results are <u>preliminary</u>.
 - Additional checks are still being made.
 - Low statistic: 10 PV events, $\mathcal{O}(200,000)$ hits

- Sanity check
- Local residuals, **single** pixel clusters

Residuals: $\Delta(x, y) = (\bar{x}, \bar{y}) - (x, y)_{truth}$

 σ = 36.80 μm

|res|>200um filtered

Local residuals,

double pixel clusters

Testbeam resolution studies for LHCb upgrade I with binary readout¹¹

Local residuals, all clusters,

N = 104,532

• CoG:
$$\sigma = 47.43$$

• Semi-binary: $\sigma = 47.14$
• Binary: $\sigma = 47.24$

Different (M/S) ratio's tested, for different cluster size's:

CAVEATS

ChatGPT's interpretation of Gaussian smearing in pixel detectors.

These results depend on the way pixel hits are — and charge sharing is simulated.
 The smearing applied can impact the resolution.

CAVEATS

ChatGPT's interpretation of Gaussian smearing in pixel detectors.

- These results depend on the way pixel hits are and charge sharing is simulated.
 The smearing applied can impact the resolution.
- Clear indication that additional code needs to be developed and needs to run 'online' for timing analysis.

- Implement detailed timing and charge sharing in simulation
 - \rightarrow time-weighted clustering
- Can timing information improve spatial resolution, or vice versa?
- Investigating impact of digitization (bit allocation),
 - e.g. in LHCb simulation and/or Allpix2

Track reconstruction information can be fed back to cluster

calculation to improve resolution.

- Track reconstruction information can be fed back to cluster
 - calculation to improve resolution.
- Possibility of checking fake clustering

- Track reconstruction information can be fed back to cluster
 - calculation to improve resolution.
- Possibility of checking fake clustering
- Cross check simulation with data from test beam.
- Develop firmware to test algorithms during test beam.

THANK YOU FOR YOUR TIME AND ATTENTION

REFERENCES

- [1] ATLAS Collaboration, Y. Okumura. "ATLAS upgrades". 12th edition of the Large Hadron Collider Physics Conference, Boston, USA, 3-7 Jun 2024. <u>https://cds.cern.ch/record/2913302/</u>
- [2] ALICE Collaboration. "Upgrade of the ALICE Inner Tracking System during LS3: study of physics performance", 21 Aug 2023, <u>https://cds.cern.ch/record/2868015</u>
- [3] P.D. Bunin, CMS Collaboration. "Upgrade of the Compact Muon Solenoid (CMS) Detector". Phys. Part. Nuclei 54, 493–499 (2023).
 https://doi.org/10.1134/S1063779623030085
- [4] R. Aaij, et al. LHCb Collaboration. "The LHCb upgrade I". JINST 19 (2024) P05065. https://iopscience.iop.org/article/10.1088/1748-0221/19/05/P05065
- [5] <u>http://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm</u>
- [6] M. Palutan. "LHCb Upgrades for the high-luminosity heavy-flavour programme". The Future of the Large Hadron Collider, 207-212 (2023). <u>https://doi.org/10.1142/9789811280184_0013</u>
- [7] K.A.M. De Bruyn, CERN. "VeloPix Readout and ASIC". International Workshop on Semiconductor Pixel Detectors for Particles and Imaging (PIXEL2018), Taipei, Taiwan, 10 - 14 Dec 2018. <u>https://cds.cern.ch/record/2655464/</u>

REFERENCES

- [8] E.L. Cid, "LHCb VeloPix front-end electronics". 1st Workshop on LHC Technologies (Red-LHC), 27-30 Sep 2021.
 <u>https://indico.cern.ch/event/1064182/</u>
- [9] X. Llopart, et al. "Timepix4, a large area pixel detector readout chip which can be tiled on 4 sides providing sub-200 ps timestamp binning". JINST 17 (2022) C01044. https://iopscience.iop.org/article/10.1088/1748-0221/17/01/C01044
- [10] K. Heijhoff. "When and Where: Precision Time Measurements with Hybrid Silicon Pixel Detectors". 10 Feb 2023
- [11] E. Buchanan. "Spatial Resolution Studies for the LHCb VELO Upgrade". 23 Jan 2019

ADDITIONAL SLIDES

Courtesy: E. Rodríguez²

https://indico.cern.ch/event/1223972/contributions/5262141/attachments/2601194/

TIMING AND TIMEPIX

TIMING AND TIMEPIX

VeloPix ASIC design

• Derived from Timepix3 and dedicated to LHCb.

	Timepix3 (2013)	VeloPix (2016 v1 & 2018 v2)			
Pixel arrangement	256 x 256				
Pixel size	55 x 55 μm ²				
Peak hit rate	80 Mhits/s/ASIC	800 Mhits/s/ASIC 50 khits/s/pixel			
Readout type	Continuous, trigger- less, TOT	Continuous, trigger-less, binary			
Timing resolution/range	1.5625 ns, 18 bits	25 ns, 9 bits			
Total Power consumption	<1.5 W	< 2 W			
Radiation hardness		400 Mrad, SEU tolerant			
Sensor type	Various, e- and h+ collection	Planar silicon, e- collection			
Max. data rate	5.12 Gbps	20.48 Gbps			
Technology	130 nm CMOS				

3

Some residuals are of order ~ 2000um

Caused either by the alignment or huge clusters

For different cluster size's

Local residuals, 3 pixel hits, within 2x2

within 1x3

31

- Also angular residuals are considered: $(rd\theta, rd\phi)$
 - Residuals calculated as projections on the chip:
 - $rd\theta$ is approximated as $d\rho$
 - $rd\phi$ is approximated as $\rho d\phi$

where r is the global radius and ρ is the radius in XY-plane

However the global coordinates are used for these residuals

MICROALIGNMENT

The error is plotted between the centre of the

column/row x_i , y_i and the average of hits in that

column/row $\overline{c_i}$, $\overline{r_i}$

OFFLINE ANALYSIS

- Global to local mapping
- Columns and rows aligned,

reflected if needed

- Additional micro alignment applied
- Source for systematic uncertainty

MICRO ALIGNMENT

every 5th row/column plotted

Before

After

MICRO ALIGNMENT

Before

Before

After

36

MICRO ALIGNMENT

255^{th} row

CAVEATS

Apart from the micro alignment, additional systematic deviation found in simulation.
 Cause unknown.

Chip	0	(mod24):	[dx,dy]	=	[+0.1, 0]
Chip	1	(mod24):	[dx,dy]	=	[+0.25, 0]
Chip	2	(mod24):	[dx,dy]	=	[+0.40, 0]
Chip	11	(mod24):	[dx,dy]	=	[0, -0.27]
Chip	12	(mod24):	[dx,dy]	=	[-0.1, 0]
Chip	13	(mod24):	[dx,dy]	=	[-0.25, 0]
Chip	14	(mod24):	[dx,dy]	=	[-0.40, 0]
Chip	23	(mod24):	[dx,dy]	=	[0, +0.27]

GLOBAL COORDINATES

