

An Unexpected Application of Fairness to Higgs Boson Detection

Karel de Vries

Nikhef

November 8, 2024

- 1. Higgs decay to Muons
- 2. Fairness
- 3. ROC-Split
- 4. Results
- 5. Conclusion & Outlook

Higgs decay to Muons

- Yukawa coupling \propto fermion mass
- Fermion masses are free parameters of SM and have to be determined experimentally
- Coupling to muon (μ) not observed
- ATLAS and CMS found evidence
- Simulated ATLAS Run 2 data

$$\blacktriangleright$$
 $\sqrt{s} = 13 \,\mathrm{TeV}$, $\mathcal{L} = 139 \,\mathrm{fb}^{-1}$

$\mu\mu$ Production

$\mu\mu$ Production

Outline Analysis Strategy

- ▶ Fit S+B-model to dimuon mass M_{µµ} spectrum
- Significance = S/Δ
- Uncertainties:
 - ► Statistical $\Delta_{\text{stat}} = \sqrt{B}$
 - Systematic Δ_{syst}
- Machine Learning (ML)

Enrich S/B with Machine Learning

- Train ML model using detector observables
- Boosted Decision Tree (BDT)
- Categorise by BDT score
- ► Extract S and B in each category
- ► Maximise the total significance

Mass Sculpting

- Perform fit to M_{µµ} spectrum of each category
- Classifier can change M_{μμ} spectrum
- Fit too much S
- Mass sculpting can cause Δ_{syst}
- ► Run 2 Legacy (R2L): trained on events with M_{µµ} ∈ [120, 130] GeV

Fairness in Particle Physics

- \blacktriangleright Use fairness to reduce Δ_{syst}
- ► Same shape $M_{\mu\mu}$ distribution of B events for each category
- \blacktriangleright Equal Opportunity for B (EOP_B)

Fairness

- Example from: Hardt, Price, Srebro, 2016 https://arxiv.org/pdf/1610.02413.pdf
- ML and bank loans
- Black people got rejected the most given they never defaulted on a loan Asian people got rejected the least given they never defaulted on a loan
- They did not have EOP of getting the loan

• Equal Odds (EOD) is when EOP is satisfied for both classes:

$$P(R(x) \in [r_1, r_2]|M_{\mu\mu}, y) = P(M_{\mu\mu}, y)$$

Stronger than EOP

▶ It turns out that in the case of $H \rightarrow \mu\mu$: EOP_S always satisfied

• In the case of
$$H \rightarrow \mu\mu$$
: EOD = EOP_B

Strategy from the literature: Post Integration (PI)

- Train classifier R with $M_{\mu\mu}$ as input
- ▶ Integrate out $M_{\mu\mu}$:

$$R_{\mathsf{PI}}(x) = \int_{110}^{160} R(M_{\mu\mu}, x) P(M_{\mu\mu}) dM_{\mu\mu}$$

- Effective, but can decrease performance a lot. Therefore used in combination with R2L (R2L+PI)
- ▶ It is applied after training, therefore the actual ML trained classifier is not fair

ROC-Split

Nikhef ROC-curve

- ▶ Given a threshold t: R(x) ≥ t is classified as S and R(x) < t as B</p>
- True positive rate (tpr) is the chance of correctly classifying S
- False positive rate (fpr) is the chance of falsely classifying B as S
- Receiver Operator Characteristic (ROC):

$$\mathsf{ROC}(t) = (\mathsf{fpr}(t), \mathsf{tpr}(t))$$

► Area Under the Curve (AUC)

EOD and ROC-curves

- EOD is satisfied when the ROC-curve is independent of *M*_{μμ}
- When EOP_S is satisfied: $EOD = EOP_B$

Nik hef

► Consequence: EOP_B is satisfied when EOP_S is satisfied and the path of the ROC-curve is independent of M_{µµ}

Nikhef ROC-Split

Algorithm to train classifiers satisfying EOP:

- 1. Divide $M_{\mu\mu}$ up in bins and determine {AUC_i}
- 2. Sample from a bin with $p_i = 2(1 AUC_i)$
- 3. Train model on this new set and repeat
- ► Can be applied to ML architectures using epochs
- Flexibility: choice between fairness and performance

Nikhef ROC-Split

Algorithm to train classifiers satisfying EOP:

- 1. Divide $M_{\mu\mu}$ up in bins and determine {AUC_i}
- 2. Sample from a bin with $p_i = 2(1 AUC_i)$
- 3. Train model on this new set and repeat
- ► Can be applied to ML architectures using epochs
- Flexibility: choice between fairness and performance

Results

- Similar significance for the three methods
- $\Delta_{stat} >> \Delta_{syst}$
- Impact of fairness limited for this analysis with the current available data

	Significance
R2L	1.42
ROC-Split	1.43
R2L+PI	1.43

Conclusion & Outlook

- ▶ Two new methods for reducing ML bias for $H \rightarrow \mu\mu$:
 - 1. ROC-Split
 - **2. R2L+PI**
- Both similar significance as R2L
- $\blacktriangleright \ \Delta_{\mathsf{stat}} >> \Delta_{\mathit{syst}}$
- ▶ Reduction of Δ_{syst} becomes more important as more data becomes available
- Create a measure to quantify ML biases
- Construct a general decorrelation strategy with fairness

Thank you!

	Event selection
Muons	At least one $\mu^+\mu^-$ pair
	$ \eta < 2.7$
	$p_T^{\mu_1}>27{ m GeV}$
	$p_T^{\mu_2} > 15 { m GeV}$
ggF/VBF	No extra leptons
	No <i>b</i> -jet

Channel Name | Event Selection

0Jet	$N_j = 0$
1 Jet	$N_j = 1$
2Jet	$egin{array}{lll} N_j \geq 2 \ m_{jj} < 400 ext{and} \eta_{j'} - \eta_{j^s} < 2.5 \end{array}$
VBF	$egin{array}{lll} N_j \geq 2 \ m_{jj} > 400 ext{or} \eta_{j'} - \eta_{j^s} > 2.5 \end{array}$
ggFAll	$N_j < 2$ or $(m_{jj} < 400$ and $ \eta_{j^l} - \eta_{j^s} < 2.5)$
AllJet	No selections

Input observables

Selections	Variable	Description
All selections	$p_T^{\mu\mu}$	Transverse momentum of the dimuon system
	$y_{\mu\mu}$	Rapidity of the dimuon system
	$\cos \theta^{\star}$	Cosine of the muon decay angle
Events with 1+ jets	$p_T^{j^l}$	Transverse momentum of the leading jet
	$\eta_{i^{l}}$	Pseudo rapidity of the leading jet
	$\Delta \phi_{\mu\mu,j^l}$	$ \phi_{\mu\mu}-\phi_{j^l} $
	$N_{ m tracks}^{j^l}$	Number of ID tracks of the leading jet
Events with 2+ jets	$p_T^{j^s}$	Transverse momentum of the subleading jet
	η_{j^s}	Pseudo rapidity of the subleading jet
	$\Delta \phi_{\mu\mu,j^s}$	$ \phi_{\mu\mu}-\phi_{j^s} $
	$N_{ m tracks}^{j^s}$	Number of ID tracks of the subleading jet
	p_T^{jj}	Transverse momentum of the dijet system
	m_{ii}	Mass of the leading jet
	y_{ii}	Rapidity of the dijet system
	$\Delta \phi_{\mu\mu,j^{l}}$	$ \phi_{\mu\mu}-\phi_{j^s} $
	H_T	Scalar sum of jet transverse momenta
	р́ _Т	Missing transverse momentum
No jet selections	N_j	Number of jets

- ► Fit S+B-model to $M_{\mu\mu}$ spectrum
- ► S: Gaussian-like
- Theoretical core function: Breit-Wigner(BW) or Drell-Yan (DY)
- Empirical function $\mathcal{F}_{\mathcal{E}}$
- ▶ B-function: core function $\times \mathcal{F}_{\mathcal{E}}$

- ► S: double-sided Cristal Ball (CB)
- Fit on simulated data
- Each category separately
- ► Shape of S fixed in S+B-model

$$CB = \begin{cases} e^{-\frac{1}{2}t^2} & \text{for } -\alpha_{\text{left}} \leq t \leq \alpha_{\text{right}} \\ e^{-\frac{1}{2}\alpha_{\text{left}}^2 \left[\frac{\alpha_{\text{left}}}{n_{\text{left}}} \left(\frac{n_{\text{left}}}{\alpha_{\text{left}}} - \alpha_{\text{left}} - t\right)\right]^{-n_{\text{left}}}} & \text{for } t < -\alpha_{\text{left}} \\ e^{-\frac{1}{2}\alpha_{\text{right}}^2 \left[\frac{\alpha_{\text{right}}}{n_{\text{right}}} \left(\frac{n_{\text{right}}}{\alpha_{\text{right}}} - \alpha_{\text{right}} + t\right)\right]^{-n_{\text{right}}}} & \text{for } t > \alpha_{\text{right}}, \end{cases}$$

Background functions

Nikhef

$$BW = \frac{1}{(M_{\mu\mu} - m_Z)^2 + \frac{\Gamma_Z^2}{4}}$$
$$DY = \frac{k}{(M_{\mu\mu}^2 - m_Z^2)^2 + m_Z^2 \Gamma_Z^2}$$

-

$$\mathcal{F}_{\mathcal{E}} = \begin{cases} \mathsf{PowerN} &= M_{\mu\mu}^{a_0 + \dots + a_{N-1}} M_{\mu\mu}^{N-1} \\ \mathsf{EpolyN} &= e^{a_1 M_{\mu\mu} + \dots + a_N M_{\mu\mu}^N} \\ \mathsf{PolyN} &= a_1 M_{\mu\mu} + \dots + a_N M_{\mu\mu}^N \end{cases}$$

Nikhef Bias Studies

- ▶ Signal strength: $\mu = \frac{S}{S_{SM}}$
- ► Fit S+B-model on 2000 toy sets
- ▶ $\mathsf{Pull} = \frac{\mu_{\mathsf{truth}} \mu_{\mathsf{fit}}}{\sigma_{\mathsf{fit}}}$
- Mean pull is spurious signal uncertainty Δ_{ss}

Significance

More Data

- ► High Luminosity LHC
- Extrapolated dataset to $\mathcal{L} = 3000 \, \mathrm{fb}^{-1}$
- ► $\Delta_{stat} \leq \Delta_{ss}$

