

An Unexpected Application of Fairness to Higgs Boson Detection

Karel de Vries

Nikhef

November 8, 2024

Table of Contents

- 1. [Higgs decay to Muons](#page-2-0)
- 2. [Fairness](#page-9-0)
- 3. [ROC-Split](#page-14-0)
- 4. [Results](#page-19-0)
- 5. [Conclusion & Outlook](#page-21-0)

Higgs decay to Muons

- ▶ Yukawa coupling \propto fermion mass
- ▶ Fermion masses are free parameters of SM and have to be determined experimentally
- \blacktriangleright Coupling to muon (μ) not observed
- ▶ ATLAS and CMS found evidence
- ▶ Simulated ATLAS Run 2 data

$$
\blacktriangleright \sqrt{s} = 13 \text{ TeV}, \ \mathcal{L} = 139 \text{ fb}^{-1}
$$

$\mu\mu$ Production

$\overline{\mu\mu}$ Production

Outline Analysis Strategy

B

- \triangleright Fit S+B-model to dimuon mass $M_{\mu\mu}$ spectrum
- ▶ Significance $= S/\Delta$
- ▶ Uncertainties:

Nik hef

- \triangleright Statistical $\Delta_{\text{stat}} = \sqrt{\frac{1}{n}}$ ▶ Systematic Δ_{syst}
- ▶ Machine Learning (ML)

Enrich S/B with Machine Learning

- ▶ Train ML model using detector observables
- ▶ Boosted Decision Tree (BDT)
- ▶ Categorise by BDT score
- ▶ Extract S and B in each category
- \blacktriangleright Maximise the total significance

Mass Sculpting

- ▶ Perform fit to $M_{\mu\mu}$ spectrum of each category
- \blacktriangleright Classifier can change $M_{\mu\mu}$ spectrum
- \blacktriangleright Fit too much S
- ▶ Mass sculpting can cause Δ_{syst}
- \blacktriangleright Run 2 Legacy (R2L): trained on events with $M_{uu} \in [120, 130]$ GeV

Nik hef

Fairness in Particle Physics

- \triangleright Use fairness to reduce Δ_{syst}
- ▶ Same shape $M_{\mu\mu}$ distribution of B events for each category
- \triangleright Equal Opportunity for B (EOP_B)

Fairness

- ▶ Example from: Hardt, Price, Srebro, 2016 <https://arxiv.org/pdf/1610.02413.pdf>
- ML and bank loans
- \triangleright Black people got rejected the **most** given they never defaulted on a loan Asian people got rejected the **least** given they never defaulted on a loan
- \triangleright They did not have EOP of getting the loan

▶ Equal Odds (EOD) is when EOP is satisfied for both classes:

$$
P\Big(R(x)\in [r_1,r_2]|M_{\mu\mu},y\Big)=P\Big(M_{\mu\mu},y\Big)
$$

- ▶ Stronger than EOP
- ▶ It turns out that in the case of $H \rightarrow \mu\mu$: EOP_S always satisfied
- ▶ In the case of $H \rightarrow \mu\mu$: EOD = EOP_B

▶ Strategy from the literature: Post Integration (PI)

- \blacktriangleright Train classifier R with $M_{\mu\mu}$ as input
- \blacktriangleright Integrate out $M_{\mu\mu}$:

$$
R_{\rm Pl}(x)=\int_{110}^{160}R(M_{\mu\mu},x)P(M_{\mu\mu})dM_{\mu\mu}
$$

- \blacktriangleright Effective, but can decrease performance a lot. Therefore used in combination with $R2L (R2L+PI)$
- \triangleright It is applied after training, therefore the actual ML trained classifier is not fair

ROC-Split

Nik hef ROC-curve

- ▶ Given a threshold $t: R(x) \geq t$ is classified as S and $R(x) < t$ as B
- \blacktriangleright True positive rate (tpr) is the chance of correctly classifying S
- \blacktriangleright False positive rate (fpr) is the chance of falsely classifying B as S

\n- Receiver Operator Characteristic (ROC):
\n- $$
ROC(t) = (fpr(t), \text{tpr}(t))
$$
\n

▶ Area Under the Curve (AUC)

EOD and ROC-curves

- ▶ EOD is satisfied when the ROC-curve is independent of $M_{\mu\mu}$
- \triangleright When EOP_S is satisfied: $EOD = EOP_B$

Nik hef

 \triangleright Consequence: EOP_B is satisfied when EOP_S is satisfied and the path of the ROC-curve is independent of $M_{\mu\mu}$

Nik hef ROC-Split

 \blacktriangleright Algorithm to train classifiers satisfying EOP:

- 1. Divide M_{uu} up in bins and determine $\{AUC_i\}$
- 2. Sample from a bin with $p_i = 2(1 \text{AUC}_i)$
- 3. Train model on this new set and repeat
- \triangleright Can be applied to ML architectures using epochs
- ▶ Flexibility: choice between fairness and performance

Nik hef ROC-Split

 \blacktriangleright Algorithm to train classifiers satisfying EOP:

- 1. Divide M_{uu} up in bins and determine $\{AUC_i\}$
- 2. Sample from a bin with $p_i = 2(1 \text{AUC}_i)$
- 3. Train model on this new set and repeat
- \triangleright Can be applied to ML architectures using epochs
- ▶ Flexibility: choice between fairness and performance

Results

- \blacktriangleright Similar significance for the three methods
- \triangleright Δ_{stat} >> Δ_{svst}
- ▶ Impact of fairness limited for this analysis with the current available data

Conclusion & Outlook

- ▶ Two new methods for reducing ML bias for $H \to \mu\mu$:
	- 1. ROC-Split
	- $2. R2L + Pl$
- ▶ Both similar significance as R2L
- ▶ ∆stat >> ∆syst
- ► Reduction of Δ_{syst} becomes more important as more data becomes available
- ▶ Create a measure to quantify ML biases
- \triangleright Construct a general decorrelation strategy with fairness

Thank you!

Event selection

Channel Name | Event Selection

Nikhef

Input observables

- ▶ Fit S+B-model to $M_{\mu\mu}$ spectrum
- \blacktriangleright S: Gaussian-like
- \blacktriangleright Theoretical core function: Breit-Wigner(BW) or Drell-Yan (DY)
- Empirical function $\mathcal{F}_{\mathcal{E}}$
- \blacktriangleright B-function: core function $\times \mathcal{F}_{\mathcal{E}}$

- \triangleright S: double-sided Cristal Ball (CB)
- \blacktriangleright Fit on simulated data
- ▶ Each category separately
- \triangleright Shape of S fixed in S+B-model

$$
\textit{CB} = \begin{cases} e^{-\frac{1}{2}t^2} & \textit{for } -\alpha_{\textsf{left}} \leq t \leq \alpha_{\textsf{right}} \\ e^{-\frac{1}{2}\alpha_{\textsf{left}}^2\left[\frac{\alpha_{\textsf{left}}}{n_{\textsf{left}}}\left(\frac{n_{\textsf{left}}}{\alpha_{\textsf{left}}}-\alpha_{\textsf{left}}-t\right)\right]^{-n_{\textsf{left}}}\right.\right.\right.\right.} & \textit{for } t < -\alpha_{\textsf{left}} \\ e^{-\frac{1}{2}\alpha_{\textsf{right}}^2\left[\frac{\alpha_{\textsf{right}}}{n_{\textsf{right}}}\left(\frac{n_{\textsf{right}}}{\alpha_{\textsf{right}}}\left.\alpha_{\textsf{right}}+t)\right]^{-n_{\textsf{right}}} & \textit{for } t > \alpha_{\textsf{right}}, \end{cases}
$$

Background functions

Nikhef

$$
BW = \frac{1}{(M_{\mu\mu} - m_Z)^2 + \frac{\Gamma_Z^2}{4}}
$$

$$
DY = \frac{k}{(M_{\mu\mu}^2 - m_Z^2)^2 + m_Z^2 \Gamma_Z^2}
$$

$$
\mathcal{F}_{\mathcal{E}} = \begin{cases}\n\text{PowerN} &= M_{\mu\mu}^{a_0 + \dots + a_{N-1} M_{\mu\mu}^{N-1}} \\
\text{EpolyN} &= e^{a_1 M_{\mu\mu} + \dots + a_N M_{\mu\mu}^N} \\
\text{PolyN} &= a_1 M_{\mu\mu} + \dots + a_N M_{\mu\mu}^N\n\end{cases}
$$

Nik hef Bias Studies

- Signal strength: $\mu = \frac{S}{S_0}$ $\mathcal{S}_{\mathsf{SM}}$
- \blacktriangleright Fit S+B-model on 2000 toy sets
- \blacktriangleright Pull = $\frac{\mu_{\text{truth}} \mu_{\text{fit}}}{\sigma_{\text{fit}}}$
- \blacktriangleright Mean pull is spurious signal uncertainty Δ_{ss}

Nik hef

Significance

Nik hef More Data

- ▶ High Luminosity LHC
- ▶ Extrapolated dataset to $\mathcal{L} = 3000$ fb⁻¹
- \triangleright $\Delta_{\text{stat}} < \Delta_{\text{ss}}$

