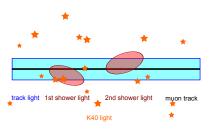
### Belle Starr atmo muon suppression

# Robert Bormuth

Leiden University and Nikhef October 21, 2016

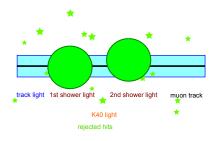







### Further Muon suppression

#### Method


Use the fact that the muon track produces light before and after the two reconstructed showers!



# Further Muon suppression

#### Hit Selection

- window[ns]≥hit.residual(vertex12)≤-20 ns
- 4 fold coincidences on DOM within 20 ns



# Further Muon suppression

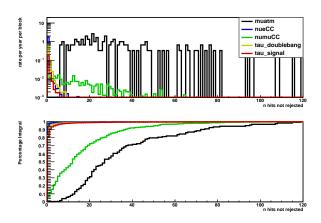



Figure: top: Number of early hits for different channels; bottom: cumulative distribution

### New Idea - as suggested by Maarten

### Background hypothesis test

Instead of making a coincidence selection in order to distinguish K40 hits from signal hits, count the hits and compare to background hypothesis (independent of parameter choice, almost)

- Select region of interest in detector: 200 m radius around both rec vertices
- Find number of PMTs present (on average around 2150 PMTs per 200 m radius)
- compute expected number of K40 hits: nPMTs \* window \* K40-Rate
  - Find number of hits recorded in 200 m radius
- use Poisson statistics to test probability of pure bkg hypothesis

### Time window size

### What is the maximal time a muon hit can be too early?

A: the earliest hit possible is one on the muon track on the edge of the considered region

 $\hookrightarrow$  window  $=200\,\text{m}/0.3\,\text{m}\,\text{ns}^{-1}+200\,\text{m}/0.2\,\text{m}\,\text{ns}^{-1}\approx 1700\,\text{ns}$  For second vertex use maximal negative time window for lower edge

### Cut flow

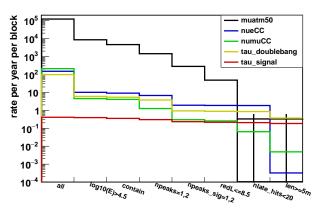



Figure : Cut flow, nlate\_hits added will be replaced with new probability cut

## Poisson Probability

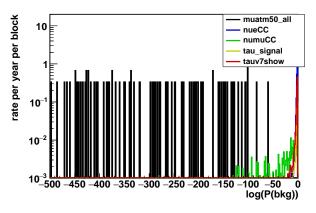



Figure : Distribution of log(P(bkg)) for different channels

### Poisson Probability

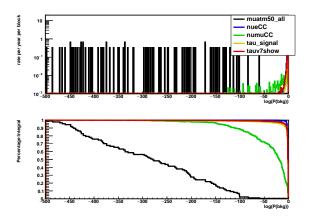
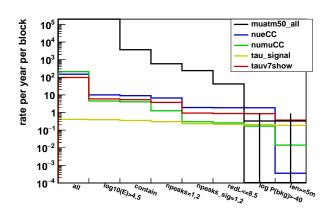




Figure: Distribution of log(P(bkg)) for different channels; bottom is the cumulative distribution

## Poisson Probability

