

Methods for cosmic-ray antideuteron identification with the AMS-02 experiment

Marta Borchiellini Kapteyn Astronomical Institute, RUG

Why studying CR antideuterons?

From: Korsmeier et al, Phys. Rev. D 97, 103011 (2018)

- Rare events: less than 10⁻⁷ of the total CR flux
- Never detected in space
- Sensitive channel for Dark Matter searches (see Donato et al., 2000; Korsmeier et al. 2018, Serksnyte et al, 2022, ...)

How to detect CR antideuterons?

Credits: AMS-02

AMS-02

3

How to detect CR antideuterons?

Credits: AMS-02

 e^{-} , He, D, \overline{D} , etc..

AMS-02

30

From: A. Kounine, International Journal of Modern Physics E, 21(8): 1230005, 2012.

From: A. Kounine, International Journal of Modern Physics E, 21(8): 1230005, 2012. Time of Flight detector:

velocity and charge

From: A. Kounine, International Journal of Modern Physics E, 21(8): 1230005, 2012.

Marta Borchiellini

CAN Symposium - 27/28 June 2024

From: A. Kounine, International Journal of Modern Physics E, 21(8): 1230005, 2012.

CAN Symposium - 27/28 June 2024

velocity

Marta Borchiellini

velocity

From: A. Kounine, International Journal of Modern Physics E, 21(8): 1230005, 2012.

CAN Symposium - 27/28 June 2024

Marta Borchiellini

Event selection

Cut based selection to ensure minum event quality

Background rejection

wrong reconstructed velocity (RICH)

+

wrong reconstructed charge sign (Silicon Tracker)

Background rejection

Classification task → Boosted Decision Trees

Background rejection

wrong reconstructed velocity (RICH)

+

wrong reconstructed charge sign (Silicon Tracker) Classification task → Boosted Decision Trees Input:

- Labeled data (background-like or signal-like)
- set of features

Background rejection

wrong reconstructed velocity (RICH)

+

wrong reconstructed charge sign (Silicon Tracker) Classification task → Boosted Decision Trees Input:

- Labeled data (background-like or signal-like)
- set of features

How to improve isotope identification with AMS-02 using Machine Learning feature selection methods? Borchiellini et al., Particles 2024, 7(2), 417-434

Dataset

130 RICH features divided into 6 classes

Data-driven approach

- \rightarrow 2 event samples selected mass-wise
 - Background-like events (m > 4 GeV/c²)
 - Signal-like
 (0.75 GeV/c² < m < 1.25 GeV/c²)

Feature selection

Feature selection

Compared different ML feature selection algorithms to a physics-driven approach from *Bueno et al., Nucl. Instrum. Meth. A 2023, 1056, 168644*

ML feature selection methods used:

- Kbest
- Random Forest
- Linear Regression
- Pearson's Correlation

Performace evaluation

- BDT trained with sets features selected by the different methods
- Performance of feature selection techniques evaluated on the performance of the classifier (accuracy, precision, recall, F1-Score)

Methods performances

- Kbest, Random Forest, and correlation outperform the approach described in Bueno et al.
- Random Forest allows for 90% background rejection and 92% signal efficiency

Borchiellini et al., Particles 2024, 7(2), 417-434

- CR Antideuterons have never been detected in space but they are a sensitive channel for investigating new physics
- An efficient rejection of the background is needed to perform antideuteron identification
- Machine Learning Feature Selection methods improve the performance of the classifier rejecting RICH background
- → For the future: apply ML feature selection techniques to improve efficiency in rejecting charged confused events

BACKUP

Feature distribution

Marta Borchiellini

Feature selection

	Charge	Track Position	Beta	Hit Number	Photoelectrons	PMT Number	Total
Kbest	6 (86%)	1 (6%)	30 (75%)	20 (77%)	24 (67%)	5 (100%)	86
RF	7 (100%)	16 (100%)	13 (33%)	7 (27%)	28 (78%)	4 (80%)	75
Linear	0 (0%)	0 (0%)	0 (0%)	1 (100%)	0 (0%)	0 (0%)	1
Correlation	7 (100%)	9 (56%)	31 (77%)	23 (89%)	32 (89%)	5 (100%)	107
Bueno et al.	2 (29%)	2 (13%)	1 (3%)	2 (8%)	2 (6%)	1 (20%)	9

Marta Borchiellini

ROC curve

Background rejection

Background rejection

wrongly reconstructed velocity (RICH)

+

wrongly reconstructed charge sign (Silicon Tracker)

Velocity measurement - RICH

Velocity is reconstructed from the cherenkov angle (from Ring):

$$\beta = \frac{1}{n\cos\theta_c}$$

Number of photons emitted:

$$\frac{d^2N}{d\lambda dx} = \frac{2\pi}{\lambda^2} \alpha Z^2 \sin^2 \theta_C$$

Rigidity sign measurement - Tracker

 \rightarrow Charge confused events

Particles confused for their antimatter counterpart (and viceversa)

2 possible causes for charge confusion:

• Spillover

• Interactions inside Tracker

Challenges

Two main backgrounds to reject:

- Protons with wrongly reconstructed charge sign (charge confusion)
- Particles with wrongly reconstructed
 RICH velocity