Towards the Deep Underground Neutrino Experiment (DUNE)

Paul de Jong Universiteit van Amsterdam

CAN Symposium 2024

Long-baseline oscillations with accelerator neutrinos: sensitivity to θ_{23} , δ_{CP} , mass ordering, new physics. Fewer neutrinos than neutrino telescopes, but more control over beam, in particular ν vs $\bar{\nu}$

Testing CP-violation in the neutrino sector is top priority in neutrino physics.

Slight tension T2K & NOvA for NO

Weak sensitivity to δ_{CP} Tension between results T2K, NOvA

Oscillation probabilities and the DUNE wideband beam

Oscillation probabilities

By using 1st and 2nd oscillation maximum, DUNE can disentangle neutrino mass ordering and CP-violation effects, in one expt. (Assuming SM, 3 generations)

If data cannot be fitted: new physics? (Sterile v, BSM interactions)

Far Away (So Close)

oscillations of a muon neutrino beam

Far site: Sanford Underground Research Facility, Lead, South Dakota

DUNE Far Site: excavation and infrastructure

First cryostat elements arrive from CERN

shaft to DUNE

Elfer A pasternation

Lead, South Dakota

excavation conveyor belt

main shaft

DUNE visitor center

lomestake mine "open cut"

Liquid Argon Time Projection Chamber

3D-tracking Reconstruction of all charged particles dE/dx measurement, particle id

DUNE Horizontal Drift simulated 3.0 GeV v_µ

8

Challenges

Or: what could possibly go wrong?

- detector technology and scale of the experiment²
- neutrino cross section systematics
- beam uncertainties

Near Detector at Fermilab site

quasi-elastic: Ar nucleus recoils ⁶ o resonances: nucleus excited, decays via p, π^{\pm} , π^{0} emission DIS: deep inelastic scattering, nucleus breaks up

input from ArgoNeuT, MicroBoone, Minerva, T2K, ProtoDUNE

Prototype: ProtoDUNE

ProtoDUNE

CERN North Area

- Actually 2 ProtoDUNEs, 6x6x6 meter, each 800 ton LAr
- NP4 took beam data in 2018, NP2 took cosmics data
- Different technologies

Nikhef contributed to DAQ for NP4

Inside of the ProtoDUNE Neutrino Platform 2 cryostat

ProtoDUNE detector performance

Detector parameter	ProtoDUNE-SP performance	DUNE specification
Average drift electric field	500 V/cm	250 V/cm (min)
		500 V/cm (nominal)
LAr e-lifetime	> 20 ms	> 3 ms
TPC+CE		
Noise	(C) 550 e, (I) 650 e ENC (raw)	< 1000 e ENC
Signal-to-noise (SNR)	(C) 48.7, (I) 21.2 (w/CNR)	
CE dead channels	0.2%	< 1%
PDS light yield	1.9 photons/MeV	> 0.5 photons/MeV
	(@ 3.3 m distance)	(@ cathode distance — 3.6 m)
PDS time resolution	14 ns	< 100 ns

A second run of (slightly) modified detectors takes place in 2024, starting now!

ProtoDUNE analysis

π^0 reconstruction: energy scale, e- π separation, cross-section

Characterizing the beam: Near Detector

New beamline at Fermilab

Near Detector, 574 meter from target, 60 m underground

SAND detector (magnet and calorimeter from KLOE)

Movable on-axis/off-axis → beam profile, energy dependence

Muon spectrometer

ND-LAr: modular liquid argon TPC

The challenge of the Near Detector

Beam spill lasts 10 μ s, and repeats at 1 Hz

Maximum drift time of electrons: 300 µs

Every spill: up to 50 interactions (neutrinos in LAr and in rock leading to muons)

Disentangle interactions:

- make small light-tight compartments
- scintillation light determines event time
- match scintillation light and charge

(But also: unprecedented event sample for physics!)

ND-LAr TPC

light detection plane

charge detection plane

The 2x2 Prototype

Currently in the NuMi neutrino beam at Fermilab

Nikhef plans

Light detection system for ND-LAr modules (with U. Bern)

35 modules, 8400 electronics channels

+ software, analysis

Physics expectations

Assuming realistic detector staging and beam performance.

Mass ordering (in case of max CPV, NO)

Timeline

Far Detector:

- 2024-2025: Infrastructure
- 2025-2026: Cryostats
- 2026-2027: First 2 modules
- 2028: fill with Ar and purify
- 2029: first data with atm. ν
- 2031: beam

Near Detector LAr:

- 2024-2025: 2x2 tests
- 2024: first full size demonstrator module
- 2026: first row of 5 modules
- 2028-2029: completion 35 modules
- 2029-2030: installation, commissioning
- 2031: beam

The Nikhef DUNE group

Paul de Jong

Tina Pollmann

Patrick Decowski

Frank Filthaut

Auke Pieter Colijn

James Mead

Wessel Krah

Corryenne Groen Dagmar Salomons

Vikas Gupta Marjolein van Nuland-Troost

+Nikhef and RU electronic engineers