

Gamma-ray astronomy in the Netherlands:

a unique way to explore the TeV sky

Manuela Vecchi Kapteyn Astronomical Institute, University of Groningen

A. Skasher

Outline

- Gamma-ray astronomy: what, why, and how?
- The Dutch contribution to gamma-ray astronomy
 - The HESS experiment: a success story and more ahead
 - Cherenkov Telescope Array Observatory: bigger, better and faster
 - SWGO: the future in the PeV sky
- Conclusions

Gamma-ray astronomy addresses several scientific questions

- What are the sites and mechanisms of high-energy particle acceleration in the Universe?
- What physical processes are at play in neutron stars and black holes?
- What is the nature of dark matter?

Ground-based gamma-ray detection

The gamma-ray sky in 2005

The gamma-ray sky in 2024

The H.E.S.S. observatory

- Located in the Khomas Highland of Namibia at 1800m asl
- H.E.S.S. phase I: four 12m IACTs
 - FoV 5°
 - first light 2002

- H.E.S.S. phase II: 28m telescope; FoV 3.5°; first light 2012
 - Energy range: 30 GeV to 100 TeV
 - Energy resolution ~10% (68% cont.)
 - Angular resolution ~0.06° (68% cont.)
- H.E.S.S. collaboration: ~250 members, at 38 institutes, in 13 countries

Dutch members: Jacco Vink, Manuela Vecchi, Jann Aschersleben

Most notable HESS scientific discoveries

- Identification of galactic sources Astron. Astrophys. 672 (2023) and many others
- Identification of extragalactic sources A&A, 430 3 (2005) and many others
- Cosmic-ray acceleration A&A, 653, A152 (2021) and many others
- Indirect Dark Matter searches JCAP 04 (2023) 040 and many others
- Transient sources Astrophys.J.Lett. 946 (2023) and many others

Vela Pulsar: a new TeV gamma-ray emitter

Discovery of a novel radiation component beyond the GeV cutoff of the Vela pulsar spectrum, extending for the first time up to 20 TeV.

How can we make it even better?

The **Cherenkov Telescope Array Observatory** is the future project for TeV gamma-ray astronomy.

CTAO compared to current generation Imaging Air Cherenkov telescopes:

- 5-10 x more sensitive
- 5 x better angular resolution
- 2.5 x larger field of view

Two arrays to cover the whole sky

- Two arrays for observations of northern and southern sky (La Palma & Paranal)
- Three telescope sizes for broad energy coverage
 - LSTs (23 m diameter dish), MSTs (12 m), SSTs (4 m)

The project status

Construction phase (ongoing, until 2028):

- significant improvement wrt current running facilities
- significant increase of the discovery space and high-impact science

Northern Array: 4 LSTs and 9 MSTs

Southern Array: 14 MSTs and 37 SSTs+

The project status

Construction phase (ongoing, until 2028):

- significant improvement wrt current running facilities
- significant increase of the discovery space and high-impact science

Operations and enhancement phase:

 operations of the observatory and construction towards the full scope configuration

LST-1: The first LST and its first discovery

- LST-1 has been operating since 2018
- The LST-1 has discovered the most distant AGN (z=0.997) at very high energies (>100 GeV)!

CTAO Northern array: construction is ongoing

(Selected) scientific goals

CTAO Galactic plane survey

- Number of TeV sources will increase by a factor of about 5
- Much deeper than any previous gamma-ray survey.

arxiv: 2310.02828

Synergies with the Dutch MWL community

Radio

Microwave

Infrared

Visible

Ultraviolet

X-ray

Gamma ray

Indirect dark matter searches

Weakly interacting massive particles (WIMPs) were created in the early universe and they are predicted in supersymmetric extensions of the Standard Model.

Indirect dark matter searches

Weakly interacting massive particles (WIMPs) were created in the early universe and they are predicted in supersymmetric extensions of the Standard Model.

DM searches in the Galactic Centre

- Distance: 8.5 kpc
- DM content: $log_{10} J [GeV^2 cm^{-5}] = 22.85$
- Observation time: 525 h
- Astrophysical gamma-ray sources:
 - Fermi bubbles
 - diffuse emission (CR interactions)
 - point-like sources (unresolved?)

Intermediate Mass Black holes: an alternative target to search for Dark Matter

Intermediate Mass Black Holes are expected to be surrounded by high DM densities (spikes) which may cause gamma-ray emission.

HESS and Fermi-LAT would be sensitive enough to probe DM annihilation cross section even below the thermal relics for DM masses in the GeV-TeV range.

arxiv: 2401.14072

See Jann Aschersleben's talk

Dark matter: Synergies with Dutch science

Instrumentation: the Focal Plane Unit of SST cameras

Andrey Baryshev, Marielle Bekema

Our team

Jacco Vink, Sera Markoff, Christoph Weniger, Evert Rol

Manuela Vecchi, Andrey Baryshev, Marielle Bekema, Jann Aschersleben, Natacha Barrow, Dagmar Rozendal, Mathilde Croisonnier

Vision for HESS-CTAO in the Netherlands

- HESS operations will continue until 2025, with a likely extension to 2028.
- The legal entity (ERIC) to operate the CTA Observatory is taking off: the NL will soon discuss membership options.
- The CTAO early science is expected around 2027: the observatory can operate even in a reduced configuration well before completion.
- The CTAO construction phase con is expected to be completed around 2028 and will operate for at least a decade.

SWGO in a nutshell

- high altitude water-Cherenkov detector observatory to measure gamma rays and cosmic rays
- International collaboration.
- · Will be located in South-America
- Complementary observations to CTA
- Finishing its R&D phase by 2025.

contact person in the Netherlands. Harm Schoorlemmer

Comparison of differential point-source sensitivity

Conclusions

The gamma-ray community in the Netherlands is growing and participating in HESS, CTAO and SWGO projects.

- HESS has provided very high-impact results and will continue to do so for the next years.
- CTAO is the future project for ground-based gamma-ray astronomy with the IACT technique with superior performance wrt current generation observatories.
- SWGO is the future project for PeV gamma-rays and will be able to achieve the highest energy gamma rays with a large field of view.

Job Advertisements

Postdoc at RUG

- goal: developing a software framework for calibrating the cameras of the Small-Sized Telescopes for CTAO.
- duration: 2+1 years
- starting date: negotiable, from the 1st of September 2024
- contact: Manuela Vecchi

Postdoc at UvA

- goal: developing a software framework for Small-Sized Telescopes for CTAO.
- duration: 2+1 years
- starting date: negotiable, from the 1st of September 2024
- contact: Jacco Vink

Thank you for your attention