# **Cosmic Rays**



### Jörg R. Hörandel Radboud University, Nijmegen - Vrije Universiteit Brussel - http://particle.astro.ru.nl

**28th Symposium on Astroparticle Physics in the Netherlands Soesterberg, July 2024** 

### Understand the origin and physics of the highest-energy particles in the Universe







# **Cosmic Rays**



## Strategic plan 2005

Strategic Plan for Astroparticle Physics in the Netherlands

Commissie voor de Astrodeeltjesfysica in Nederland (CAN) Table 1. Foreseen involvement (in 2006) of tenured senior scientists in the selected observational and/or experimental projects that are part of the present strategic plan.



| <b>Research Area</b> | Institute         | Scientific Staff | Research    |
|----------------------|-------------------|------------------|-------------|
| Radio                | UvA - Amsterdam   | RAMJ Wijers      | LOFAR; c    |
| Detection            |                   | S. Markoff       | objects (G  |
| of Cosmic Rays       |                   |                  |             |
|                      | ASTRON - Dwingelo | H Falcke (& RU)  | LOFAR, A    |
|                      | KVI - Groningen   | JCS Bacelar      | LOFAR, A    |
|                      |                   | AM van den Berg  | Westerbor   |
|                      |                   | MN Harakeh       | extended a  |
|                      |                   | J Messchendorp   |             |
|                      |                   | HJ Wörtche       |             |
|                      | RU - Nijmegen     | P Groot          | Expertise   |
|                      |                   | SJ de Jong       | LOFAR/co    |
|                      |                   | J Kuijpers       | Auger       |
|                      |                   | Ch Timmermans    |             |
|                      |                   | (new UD astron.) |             |
| Deep-sea             | NIKHEF -          | M de Jong        | ANTARE      |
| neutrino             | Amsterdam         | P Kooijman       | KM3NeT      |
| detection            |                   | G vd Steenhoven  |             |
|                      |                   | E de Wolf        |             |
|                      | UvA - Amsterdam   | RAMJ Wijers      | v-astronom  |
|                      | KVI - Groningen   | MN Harakeh       | ANTARE      |
|                      |                   | N Kalantar       | KM3NeT      |
|                      |                   | H Löhner         |             |
|                      | UU/SRON – Utrecht | A Achterberg     | v-astronom  |
|                      |                   | N v Eijndhoven   | AMANDA      |
|                      |                   | J Heise          | analysis; K |
| Gravitational        | NIKHEF -          | H vd Graaf       | LISA elect  |
| wave detection       | Amsterdam         | FL Linde         | and analys  |
|                      | VU - Amsterdam    | JFJ vd Brand     | LISA simu   |
|                      |                   | Tj Ketel         | analysis    |
|                      | LU - Leiden       | G Frossati       | MiniGRA     |
|                      | RU - Nijmegen     | J Kuijpers       | GW-astron   |
|                      | SRON - Utrecht    | A Selig          | ISTM for I  |
|                      |                   | M Smit           | Pathfinder  |
| Outreach             | VU - Amsterdam    | HJ Bulten        | HiSparc     |
|                      | NIKHEF -          | B van Eijk       | HiSparc     |
|                      | Amsterdam         | JW van Holten    |             |
|                      | KVI - Groningen   | J Messchendorp   | HiSparc     |
|                      | LU - Leiden       | P van Baal       | HiSparc     |
|                      | RU - Nijmegen     | Ch Timmermans    | HiSparc     |
|                      |                   |                  | LOFAR@      |
|                      | UU – Utrecht      | J Kortland       | HiSparc     |
|                      |                   | GJL Nooren       |             |

Jörg R. Hörandel, Cosmic Rays, APP28, July 2024



2

### **Cosmic Rays** cosmic rays

### neutrinos

Auger KM<sub>3</sub>NeT CTA **XENON1T** Virgo

### dark matter

### gravitational waves



### gamma rays



## **Strategic plan 2014**

CAN Committee for Astroparticle Physics in the Netherlands

### Strategic plan for **Astroparticle Physics** in the Netherlands 2014 - 2024









# The Alpha Magnetic Spectrometer (AMS-02)

- Particle physics experiment in space detecting GeV to TeV cosmic rays on the International Space Station since 2011.
   AMS-02 detected so far more than 200
- AMS-02 detected so far more than 20 billion cosmic-ray events.

Activities in the Netherlands (Groningen):

- CR isotopes identification methods
- Deuteron flux measurement (accepted PRL)
- Antideuteron searches
- interpretation of AMS data



Our team: Manuela Vecchi, Marta Borchiellini







#### See Marta's talk tomorrow





# **Upgraded Surface Detector of Auger Observatory**

radio antenna 30-80 MHz two orthogonal polarizations 250 MHz sampling

# plastic scintillator 120 MHz sampling

read-out electronics



### water-Cherenkov detector **120 MHz sampling**

J.R. Hörandel et al, EPJC Web of Conf. 210 (2019) 06

**3000 km<sup>2</sup>** 







# **Upgraded Surface Detector of Auger Observatory**

radio antenna 30-80 MHz two orthogonal polarizations 250 MHz sampling

# plastic scintillator 120 MHz sampling

read-out electronics

### water-Cherenkov detector **120 MHz sampling**

J.R. Hörandel et al, EPJC Web of Conf. 210 (2019) 06005



### atmosphere of Earth is transparent in 30-80 MHz band



Wavelength











## ~500 stations Nov 2023











### ~750 positions taking data stations 600 400 0 umber 200 long-term testing with engineering array

........................ ...................... ............................ 

> ...................... .......... -----

................... ••••••••••••••••••• ................... ................ .... .. ..

....

### positions in DAQ















air showers simulated with CoREAS

F. Schlüter<sup>a,b,\*</sup> and T. Huege<sup>a,c</sup> JCAP01 (2023) 008

# Pierre Auger Observatory - SSD







### **Radio cosmic-ray detection with dense arrays**





#### trigger: 13 of 20 Next up - majore upgrade to LOFAR 2.0! • 10x increase in event rate

P. Schellart et al., A&A 560, 98 (2013)



buffer

- 10+ years of CR detection at LOFAR
- Confirmation of radio emission mechanisms and signal polarization, important step forward in the field
- Detailed reconstruction of radio footprint energy and Xmax





- 100% duty cycle
- Increased measurement bandwidth
- Wider energy range









## **Radio cosmic-ray detection with dense arrays**



- Unprecedented X<sub>max</sub> reconstruction  $(6-8 g/cm^2)$
- Probe high energy hadronic physics
- Proton / Helium primary separation
- Beamforming access to very low energies
- Can we detect gamma rays?



- The next generation radio telescope is the Square Kilometer Array (SKA), with the 50-350 MHz component being built in the Australian Outback
- We will be able to measure the CR radio footprint between 10<sup>16</sup> - 10<sup>18</sup> eV with 10,000+ antennas!
- Deploying now! First data in the next 2 years







# **GRAND** concept

### scalable, cheap, robust radio antennas ideal for **giant** arrays

**3** Prototypes

2023

2028

#### cosmic rays 1016.5-18 eV

autonomous radio detection of very inclined air-showers

optimistic fluxes



# **Progress in GRAND**



GRAND@Auger: 10 antennasGP13: 13 antennas nearat the Pierre AugerDunHuang, ChinaObservatoryObservatory

### Next steps: filtering and searching for coincidences with Auger (in GRAND@Auger) or signatures of air showers from direction and polarization (in GP13)

### prototypes





# Radio Neutrino Observatory - Greenland

- Polar ice has a radio attenuation length ~ kms (natural target!)
- Very sparse instrumentation can be built to cover large areas
- •35 stations deployed over 5 (+/-) years, makes this a possible detection instrument in the next decade
- First stations deployed in 2021









## **RET: Radar Echo Telescope RET - Neutrinos**

- Instrument a large volume of ice with a radar system.
- •A radio transmitter (TX) constantly illuminates the ice.
- •A neutrino ( $\nu$ ) interacts in the monitored volume, leaving an ionization trail.
- •The ionization trail will reflect a radio signal, which is recorded by the receivers (RX).

*Phys. Rev. D* 100, 072003 (2019)







### **RET - Cosmic Rays** (demonstration of technique in nature)

- A CR-induced extensive air shower impacting a high-altitude ice sheet will also leave an ionization trail (secondary cascade).
- RET-CR: A shallow radar setup can be set alongside a surface detection system composed of radio antennas and scintillators.
- Search for coincident signatures of radar echoes and surface.





# **Deflection of cosmic rays in magnetic fields**



Figure 19. Angular deflections of ultrahigh-energy cosmic rays in the eight model variations derived in this paper and JF12. The cosmic-ray rigidity is 20 EV ( $2 \times 10^{19}$  V). Filled circles denote a grid of arrival directions and the open symbols are the back-tracked directions at the edge of the Galaxy.

70

60

### The Coherent Magnetic Field of the Milky Way

### need to know rigidity (mass) of incoming cosmic rays





# **GCOS - Global Cosmic Ray Observatory**

### I. Maris et al, UHECR (2022)

- UHECRs observatory covering more than 60,000 km<sup>2</sup> (40,000 -80,000 km<sup>2</sup>)
- With 60,000 km<sup>2</sup> we can reach the integrated Auger 2030-exposure in 1 years AugerPrime expected exposure in 6 months
- Targeting very good quality events for energies  $\geq$  30 EeV (5-fold) and full efficiency at 10 EeV (3-fold) events)
  - Resolutions per event: energy better than 10%, muon resolution better than 10%,  $X_{\rm max}$  better than 30 g/cm<sup>2</sup>, and angular resolution better than 1°
    - Full sky coverage with sites in both hemispheres and surrounded by mountains









$$egin{split} egin{split} eg$$

Not only total signal, but also time distributions



**Ioana Maris** Antoine Letessier-Selvon et al., Nucl. Instr. Meth. A 767 (2014) 41–49

#### prototype measurements at Auger Observatory

Mean LDFs for the electromagnetic and muonic components

r [m]

900 events ( $E > 0.03 \, {
m EeV}$ ,  $\theta < 45^{\circ}$ ) 10=

















Figure 1: Diagram summarizing the strong connections of UHECRs with particle physics and astrophysics, the fundamental objectives of the field (in orange) for the next two decades, and the complementarity of current and next-generation experiments in addressing them.



2022

May

16

 $\mathbf{C}$ 

arXiv:2205.0584

Ultra-High-Energy Cosmic Rays The Intersection of the Cosmic and Energy Frontiers

Abstract: The present white paper is submitted as part of the "Snowmass" process to help inform the long-term plans of the United States Department of Energy and the National Science Foundation for high-energy physics. It summarizes the science questions driving the Ultra-High-Energy Cosmic-Ray (UHECR) community and provides recommendations on the strategy to answer them in the next two decades.

#### arXiv: 2205.05845

GCOS - Jörg R. Hörandel - ARENA 2022 22







9th International Workshop on Acoustic and Radio EeV Neutrino Detection Activities



# GCOS 7-10 June 2022, Santiago de Compostela

# **The Global Cosmic Ray Observatory** Multi-messenger astroparticle physics beyond 2030

| Experiment                                                                                                                                                                                                                    | Feature                                                                      | Cosmic Ray Science*                                                                                   | Tin                                       | neline                                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|--|
| Pierre Auger Observatory                                                                                                                                                                                                      | Hybrid array: fluorescence,<br>surface $e/\mu$ + radio, 3000 km <sup>2</sup> | Hadronic interactions, search for BSM, UHECR source populations, $\sigma_{p-Air}$                     | AugerPrime upgrade                        |                                       |  |
| Telescope Array (TA)                                                                                                                                                                                                          | Hybrid array: fluorescence,<br>surface scintillators, up to 3000 $\rm km^2$  | UHECR source populations proton-air cross section $(\sigma_{p-Air})$                                  | TAx4 upgrade                              |                                       |  |
| IceCube / IceCube-Gen2                                                                                                                                                                                                        | Hybrid array: surface + deep,<br>up to $6 \text{ km}^2$                      | Hadronic interactions, prompt decays,<br>Galactic to extragalactic transition                         | Upgrade + surface IceC<br>enhancement dep | ube-Gen2IceCube-Gen2oloymentoperation |  |
| GRAND                                                                                                                                                                                                                         | Radio array for inclined events, up to 200,000 $\rm km^2$                    | UHECR sources via huge exposure, search for ZeV particles, $\sigma_{p-Air}$                           | GRANDProto GRAND<br>300 10k               | GRAND 200k<br>multiple sites, step by |  |
| POEMMA                                                                                                                                                                                                                        | Space fluorescence and<br>Cherenkov detector                                 | UHECR sources via huge exposure, search for ZeV particles, $\sigma_{p-Air}$                           | EUSO program                              | POEMMA                                |  |
| GCOS                                                                                                                                                                                                                          | Hybrid array with $X_{\text{max}} + e/\mu$<br>over 40,000 km <sup>2</sup>    | UHECR sources via event-by-event rigidity, forward particle physics, search for BSM, $\sigma_{p-Air}$ | GCOS<br>R&D + first sit                   | e GCOS<br>further sites               |  |
| *All experiments contribute to multi-messenger astrophysics also by searches for UHE neutrinos and photons; 2025 2030 2035 several experiments (IceCube, GRAND, POEMMA) have astrophysical neutrinos as primary science case. |                                                                              |                                                                                                       |                                           |                                       |  |

### Workshop July 2022, Wuppertal (Germany) https://agenda.astro.ru.nl/event/21

### GCOS homepage: http://particle.astro.ru.nl/gcos

GCOS - Jörg R. Hörandel - ARENA 2022 23



А







