The next facility in high energy physics – the scientific potential of an e⁺e⁻ Higgs/top/EW factory

Marcel Vos,

IFIC, CSIC/UV, Valencia

NIKHEF colloquium

Amsterdam, March 2024

1

particle physics discoveries 1960-2022

Colloquium NIKHEF march 2024

Accelerators...

The '30s, '40s and '50s saw a rapid succession of different machine designs: D.C and electro-static accelerators were replaced at the "energy frontier" by cyclotrons, then betatrons, sychrocyclotrons...

Livingston plot registers progress: The succession of techniques fueled decades of exponential progress, with a factor 10 in energy every six years

What's next? In the 1950s...

Fermi, in 1954, speculated that in 1994 we'd need to build a planet-sized accelerator

Note: we didn't. If the size of the LHC is a deception, its center-of-mass is close to what Fermi hoped for!!

The future is hard to predict, even for a genius

See also: Beacham & Zimmermann, A very high-energy hadron collider on the moon (11.000 km, 20 T magnets, 14 PeV pp), New J. Phys. 24 (2022)

Colliders

The quantity that matters is "center-of-mass" energy

In fixed-target experiments:

 $E_{\rm CM}\!\propto\!\sqrt{E_{\rm beam}}$

With colliding beams:

 $E_{CM} \propto E_{beam}$

The key realization: collide beams of particles and anti-particles

Touschek and he Frascati group in front of ADA ('50s)

Colliders were pioneered by Wideroe and Touschek Recommended reading: biographical accounts from U. Amaldi and G. Pancheri

Colliders: progress 1960-2024

After WWII colliders fueled progress in particle physics.

Further decades of exponential progress!

Colloquium NIKHEF march 2024

Synchrotron radiation

Synchrotron radiation master formula:

Energy loss per turn as a function of beam energy E, particle mass m and circumference L

Energy must be restored (RF power) and removed from magnets (cooling power)

Solutions:

- large rings

(LEP, FCCee/CEPC)

 $(\Delta E)_{sync} \propto \frac{E^4/m^4}{I}$

- linear colliders

(SLC, XFEL, ILC/CLIC/CCC, wakefield)

- accelerate more massive particles
 - (Tevatron/LHC, proton energy loss is 10¹³ times smaller than for electrons)
- accelerate more massive *elementary* particles (muon collider)

Question: which is HEP's favourite solution?

Colloquium NIKHEF march 2024

Today's collider landscape...

Future collider proposals: 0.125 – 500 TeV; e+e-, hh, eh, $\mu\mu$, $\gamma\gamma$, ...

Answer: all of them! Accelerator R&D provides many options...

Colloquium NIKHEF march 2024

European, American and Asian strategies agree on big picture — e⁺e⁻ Higgs factory first:

large circular collider: FCC-ee (CERN) and CEPC (China) linear collider: ILC (Japan), CLIC (CERN), CCC (US)

- exploration of the energy frontier next:

large pp collider: FCC-hh (CERN), SPPC (China) muon collider: μ-collaboration (CERN+US) plasma: R&D (EUPRAXIA, AWAKE), designs (i.e. ALEGRO, Hybrid)

Snowmass report

The proposed plans in five-year periods starting in 2025 are given below.

For the five-year period starting in 2025:

- 1. Prioritize the HL-LHC physics program, including auxiliary experiments,
- 2. Establish a targeted e^+e^- Higgs Factory Detector R&D program,
- 3. Develop an initial design for a first-stage TeV-scale Muon Collider in the U.S.,
- 4. Support critical Detector R&D towards EF multi-TeV colliders.

For the five-year period starting in 2030:

- 1. Continue strong support for the HL-LHC physics program,
- 2. Support the construction of an e^+e^- Higgs Factory,
- 3. Demonstrate principal risk mitigation for a first-stage TeV-scale Muon Collider

Plan after 2035:

- 1. Continuing support of the HL-LHC physics program to the conclusion of archival measurements,
- 2. Support completing construction and establishing the physics program of the Higgs factory,
- 3. Demonstrate readiness to construct a first-stage TeV-scale Muon Collider,
- 4. Ramp up funding support for Detector R&D for energy frontier multi-TeV colliders.

European strategy update

High-priority future initiatives

A. An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

Colloquium NIKHEF march 2024

9

European, American and Asian strategies agree on big picture — e⁺e⁻ Higgs factory first:

large circular collider: FCC-ee (CERN) and CEPC (China) linear collider: ILC (Japan), CLIC (CERN), CCC (US)

— exploration of the energy frontier next:

large pp collider: FCC-hh (CERN), SPPC (China) muon collider: μ-collaboration (CERN+US) plasma: R&D (EUPRAXIA, AWAKE), designs (i.e. ALEGRO, Hybrid)

Cool Copper Collider: high accelerating gradient in normal-conducting cavities at low temperature https://arxiv.org/abs/2203.07646

Muon collider R&D is reinforced in EU and US https://arxiv.org/abs/2209.01318

Hybrid asymmetric collider: e- benefit from plasma wakefield acceleration, e+ use classical acceleration: 3 km Higgs factory https://arxiv.org/abs/2303.10150

European, American and Asian strategies agree on big picture — e⁺e⁻ Higgs factory first:

large circular collider: FCC-ee (CERN) and CEPC (China) linear collider: ILC (Japan), CLIC (CERN), CCC (US)

— exploration of the energy frontier next:

large pp collider: FCC-hh (CERN), SPPC (China) muon collider: μ -collaboration (CERN+US) plasma: R&D (EUPRAXIA, AWAKE), designs (i.e. ALEGRO, Hybrid)

mpact conners are possible Cool Copper Collider: high accelerating gradient in normal-conduc* cavities at low temperature https://arxiv.org/abs/2203.07646

Muon collider R&D is reinforced in EU and US https://arxiv.org/abs/2209.01318

Hybrid asymmetric collider: e- benefit from plasm e+ use classical acceleration: 3 km Higgs fac* https://arxiv.org/abs/2303.10150

European, American and Asian strategies agree on big picture — e⁺e⁻ Higgs factory first:

large circular collider: FCC-ee (CERN) and CEPC (China) linear collider: ILC (Japan), CLIC (CERN), CCC (US)

— exploration of the energy frontier next:

large pp collider: FCC-hh (CERN), SPPC (China) muon collider: μ -collaboration (CERN+US) plasma: R&D (EUPRAXIA, AWAKE), designs (i.e. ALEGRO, Hybrid)

theus Cool Copper Collider: high accelerating gradient in normal-conduc* JC* cavities at low temperature https://arxiv.org/abs/2203.07646

Muon collider R&D is reinforced in EU and US https://arxiv.org/abs/2209.01318

Hybrid asymmetric collider: e- benefit from plasn e+ use classical acceleration: 3 km Higgs fac* https://arxiv.org/abs/2303.10150

Colloquium NIKHEF march 2024

.d acceleration,

The NEXT collider

The 2020 update of the European Strategy for Particle Physics approved by the CERN council in May 2020 provides a concise and clear answer:

"An electron-positron Higgs factory is the highest-priority next collider"

This colloquium deals with the NEXT collider,

Read the complete document:

https://home.cern/sites/home.web.cern.ch/files/2020-06/2020%20Update%20European%20Strategy.pdf

Colloquium NIKHEF march 2024

Long live the LHC!

Long live the LHC

The LHC will continue to deliver science for another decade+

The HL-LHC is no longer a future collider; in our long game it's practically the present

The Higgs boson – from run 1 to run 2 to HL-LHC

The signal in the "discovery channels" has grown very robust

LHC run 2 delivered 140 fb⁻¹ LHC run 3 reached 70 fb⁻¹ HL-LHC to reach 3 ab^{-1}

Higgs boson news

The initial discovery channels (gg \rightarrow H, H $\rightarrow \gamma\gamma$ and H $\rightarrow ZZ$) are joined by many other production and decay modes

2012: one out of four production mechanisms, two decay modes 2015: Vector-boson-fusion, $H \rightarrow \tau\tau$ (fermions!) 2018: Associated ttH production, $H \rightarrow$ bb decay 2020: evidence $H \rightarrow \mu\mu$ (2nd gen.)

Still missing: decays to charm, tH production, di-Higgs production

Higgs boson summary

Fabiola Giannotti: "we got very lucky"

John Ellis: "it looks and quacks like a Higgs boson"

ATLAS & CMS: arXiv:2207.00043/92

Salam, Wang, Zanderighi, arXiv: 2207.00478

Discovered "yesterday", now slowly turning into precision physics

Higgs boson: HL-LHC prospects

Projections for Higgs coupling measurements

S2 scenario: assumes 3000/fb and progress on all fronts, halving theory uncertainties and scaling experimental uncertainties with 1/sqrt(L)

CERN Yellow Rep.Monogr. 7 (2019) 221-584, arXiv:1902.00134

How can a new e⁺e⁻ collider help?

Colloquium NIKHEF march 2024

The LHC as a precision machine (example)

 $\sigma_{t\bar{t}} = 829 \pm 1 \text{ (stat)} \pm 13 \text{ (syst)} \pm 8 \text{ (lumi)} \pm 2 \text{ (beam) pb},$

ArXiv:2303.15340

	Stat.	Syst.	Lumi.	Theory
LHC tour-de-force	0.1%	1.5% modelling	0.8% arXiv:2212.09379	4% NNLO+NNLL
e+e- hyper precision	few x 0.1% arXiv:1807.02441	0.1%	0.1%	0.1% N3LO, arXiv:2209.14259

LHC is reaching surprising precision, and theory is not far behind However, e+e- colliders can do an order of magnitude better

Caveats: LHC can do better differential measurements; theory still has time to catch up

Colloquium NIKHEF march 2024

Precision Higgs physics

The Higgs boson and the big questions

https://gsalam.web.cern.ch/gsalam/talks/repo/202403-NIKHEF-symposium-NIKHEF-symposium.pdf

The electron-positron program

The next collider: the Higgs factory run

A Higgs factory is an e^+e^- collider operated at ~250 GeV, where the rate of the Higgs-strahlung process is maximum

Produce approx. 1 million Higgses *in perfectly controlled conditions*

Higgs factory advantages

 $e^+e^- \to ~ZH ~\to ~\mu\mu\tau\tau$

Well-known initial state

(e⁺e- annihilate and transfer all their energy)
Excellent detector performance
(rates and radiation levels limit LHC detectors)
Machine induced backgrounds nearly negligible
(Pile-up and Underlying Event limit LHC analyses)
SM backgrounds of same order as signal
(LHC analyses muddle through orders of magnitude)
SM rates can be precisely predicted
(QCD and PDF uncertainties limit LHC precision)

Recoil-mass analysis yields sharp Higgs peak without ever touching the Higgs decay products \rightarrow ideal laboratory to count Higgs decays

Absolute normalization of Higgs couplings as total width is accessible

ILD interim design report, arXiv:2003.01116

Higgs couplings

Improve Higgs couplings to Z, W and b to sub-% precision

Precision measurements also for gluon and charm (hard at LHC)

Strange and electron Yukawa coupling accessible?

LHC data remain crucial for muons, photons and top

3.5 Precision of Higgs boson couplings [%] Model Independent EFT Fit LCC Physics WG x 1/2 HL-LHC ⊕ ILC250 x 1/3 3 HL-LHC ILC250 ILC500 × <u>1</u>/10 dark/light: S1*/S2* 2.5 × 1/2 2 1.5 0.5 0 WЬ Ζγμ tλ Ζ τ g С $\Gamma_{inv} \Gamma_h \gamma$

arXiv:1903.01629

Higgs couplings

ILC input to Snowmass, arXiv:2203.07622

Qualitative (charm) and quantitative (few $\% \rightarrow$ few per mille) improvements over HL-LHC precision, important complementarity

Viable BSM scenarios provide different patterns of experimentally accessible deviations in coupling measurements

The Higgs boson data sheet

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

H⁰

Enough data to fill the PDG data sheet on the H⁰ boson

J = 0

Mass $m = 125.25 \pm 0.17$ GeV (S = 1.5) Full width $\Gamma = 3.2^{+2.8}_{-2.2}$ MeV (assumes equal on-shell and off-shell effective couplings)

H⁰ Signal Strengths in Different Channels

Combined Final States = 1.13 ± 0.06 $W W^* = 1.19 \pm 0.12$ $Z Z^* = 1.01 \pm 0.07$ $\gamma \gamma = 1.10 \pm 0.07$ $c \overline{c}$ Final State = 37 ± 20 $b \overline{b} = 0.98 \pm 0.12$ $\mu^+ \mu^- = 1.19 \pm 0.34$ $\tau^+ \tau^- = 1.15^{+0.16}_{-0.15}$ $Z \gamma < 3.6$, CL = 95% $\gamma^* \gamma$ Final State = 1.5 ± 0.5 $t \overline{t} H^0$ Production = 1.10 ± 0.18 $t H^0$ production = 6 ± 4 H^0 Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV = 56 ± 4 pb

Beyond Higgs couplings

Running couplings

Scale evolution of the strong coupling predicted by QCD:

$$\mu_R^2 \frac{d\alpha_s}{d\mu_R^2} = \beta(\alpha_s) = -(b_0 \alpha_s^2 + b_1 \alpha_s^3 + b_2 \alpha_s^4 + \cdots)$$

Precise determinations from 1 GeV to > 1 TeV!

Reference $\alpha_s(m_z) = 0.118 \pm 0.001$ (PDG, <1%)

This plot collects α_s value extracted from measurements of many observables in several processes over a broad energy range

Running constants

Quark masses – parameters of the QCD Lagrangian – must run too

$$rac{\partial m_q(\mu)}{\partial \log(\mu^2)} = \gamma_m[lpha_s(\mu)]\,m_q(\mu)$$
 Anomalous mass dimension

Experimentally testable with Higgs decay to bottom quarks:

- quadratic dependence on m_b
- EW process, independent (LO) from α_{s}
- precise predictions available
- well-defined natural scale m_h

QCD series for $\Gamma(H \rightarrow bb)$ for $\mu = m_{H}$:

$$1 + \delta_{\rm QCD} = 1 + 0.2030 + 0.0374 + 0.0019 - 0.0014.$$

And for $\mu = m_b$:

 $1 + \delta_{\rm QCD} = 1 - 0.5665 + 0.0586 + 0.1475 - 0.1274.$

Running of the bottom quark mass

Quark masses are not predicted by the SM, but Renormalization Group Equations do give a (testable) prescription for their scale evolution

Measurements at several center-of-mass energies:

- m_b(m_b) from low-energy expts
- m_b(m_z) from LEP/SLD
- $m_b(m_H)$ from LHC Higgs

Uncertainties on evolution:

 $\begin{array}{l} -\text{ reference } m_b(m_b) \rightarrow \text{PDG} \\ -\alpha_s \pm 0.001 \ (\text{PDG } \alpha_s(m_Z) \quad \blacksquare \) \\ -\alpha_s \pm 0.004 \ (\text{BSM evolution} \quad \blacksquare \) \\ -\text{ missing higher orders (negligible)} \end{array}$

RG evolution from Revolver, arXiv:2102.01085

LHC $m_b(m_h)$ today is as precise as LEP $m_b(m_z)$ All data together: observation of scale evolution

Colloquium NIKHEF march 2024

Running of the bottom quark mass

Quark masses are not predicted by the SM, but Renormalization Group Equations do give a (testable) prescription for their scale evolution

Measurements at several center-of-mass energies:

- m_b(m_b) from low-energy expts
- m_b(m_z) from LEP/SLD
- mb(mH) from LHC Higgs
- m_b(m_H) from HL-LHC
- $m_{\text{b}}(m_{\text{H}})$ from Higgs factory
- $m_b(m_z)$ from GigaZ/TeraZ

Uncertainties on evolution:

- modest improvement in α_{s}

The next years at the LHC will see rapid progress in $m_b(m_H)$; the Higgs factory will further improve $m_b(m_H)$ and $\alpha_s(m_Z)$

Beyond Higgs physics

Full SM characterization

Standard Model Production Cross Section Measurements

Status: October 2023

The Higgs programme

Colloquium NIKHEF march 2024

Full SM characterization

Full SM characterization

Observation of 4-top production

Just another SM process? Maybe. But definitely "new SM physics" !

Colloquium NIKHEF march 2024

Example: overconstrain the SM

Cornering the top Yukawa with tree-level (ttH and tttt) and loop-induced bounds ($H \rightarrow \gamma \gamma$, gg $\rightarrow H$, pp $\rightarrow t\bar{t}$)

250 GeV e+e- run offers excellent "indirect" sensitivity

 $\Delta y/y < 1\%$ from H $\rightarrow gg$ $\Delta y/y < 1\%$ from H $\rightarrow \gamma\gamma$

Mitov et al., arXiv:1805.12027

Jung et al., arXiv:2006.14631

SMEFT characterization

Over-constrain all sectors of the SM Effective Field Theory: Higgs + EW + top

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_{i} C_i O_i + \mathcal{O}\left(\Lambda^{-4}\right)$$

Ellis et al., arXiv:2012.02779 SMEFiT, arXiv:2105.00006 SMEFT+PDF, arXiv:2303.06159

Future collider prospects: separate Higgs/EW and top de Blas et al., 2206.08326

Colloquium NIKHEF march 2024

Top quark mass

Top mass at LHC & HL-LHC, interpretation

Direct mass measurements are

experimentally the most precise:

m_t ~ **172.52 ± 0.33 GeV** (*ATLAS+CMS run 1* **combination**)

Theory status quo: "the difference between the top mass in direct measurements and the top pole mass is of the order of few hundred MeV", Corcella, Nason, Hoang, Yokoya, arXiv:1902.04070

Cross-section-based measurements inclusive ~ 2 GeV precision, differential ~1 GeV Combination very powerful, arXiv:2311.05509

HL-LHC projections in Snowmass report, arXiv:2209.11267

Combination of direct measurements: < 200 MeV (exp.) + ?? (theo.) Combination of x-sec-based extractions: ~ 500 MeV (theo.+exp.)

e+e- threshold scan

A scan of the e⁺e⁻ center-of-mass energy through the pair production threshold allows for the ultimate mass measurement (*Gusken & Kuhn '85, Peskin & Strassler '91*)

The threshold position is sensitive to the top quark mass, the shape to the width The normalization is sensitive to strong coupling and top quark Yukawa coupling

Top quark mass

N3LO NRQCD at threshold Beneke et al., PRL 115 (2015)

Experimental studies:

Martinez & Miquel, hep-ph/020735, Seidel et al., arXiv:1303.3758 Ongoing ECFA Focus Topic study

Threshold scan yields wellunderstood top mass measurement, with < 50 MeV uncertainty

Included in all e+e- collider project operation scenarios (but not necessarily in first stage)

The Higgs/top/EW factory^(*): which one?

(*) I assume one will be built, but see: Blondel & Janot, Circular and linear e⁺e⁻ colliders: another story of complementarity, arXiv:1912.11771

Circular or linear

FCCee/CEPC excell at low energy (10¹² Z-bosons!)

Synchrotron radiation prevents operation above ~360 GeV

At linear colliders luminosity increases with sqrt(s)

ILC/CCC/CLIC are the avenue to reach 400-1000 GeV

Small print: there is a trade-off between luminosity and power consumption, instantaneous luminosity must be folded with operation schedule

https://arxiv.org/pdf/1910.11775.pdf

Higgs couplings

https://arxiv.org/pdf/1910.11775.pdf

All Higgs factory projects (/ / /) do excellent Higgs physics; great improvement over LHC legacy ()

Note: inputs have large uncertainty; lepton and hadron colliders are hard to compare on the same footing

Z-pole

Revisit Z-pole physics expored by LEP and SLC, with much greater luminosity, better detectors and more advanced theory

"TeraZ" run of circular colliders: 10⁶ times LEP "GigaZ" run of linear colliders: 10³ times SLC

The top Yukawa coupling at a lepton collider

250 GeV run offers "indirect" sensitivity to the top Yukawa

 $\Delta y/y < 1\%$ from H $\rightarrow gg$ $\Delta y/y < 1\%$ from H $\rightarrow \gamma\gamma$

Mitov et al., arXiv:1805.12027

Jung et al., arXiv:2006.14631

Assuming the SM for all other couplings

500+ GeV run offers a "direct" measurement in ttH production

<3% precision robust in global analysis

Price et al., arXiv:1409.7157

Jung et al.,arXiv:2006.14631

Valu	tes in $\%$ units	LHC	HL-LHC	ILC500	ILC550	ILC1000	CLIC
Sau	Global fit	12.2	5.06	3.14	2.60	1.48	2.96
$\left \begin{array}{c} oy_t \\ \end{array} \right $	Indiv. fit	10.2	3.70	2.82	2.34	1.41	2.52

Top-SMEFT fit on prospects, de Blas et al., 2206.08326

Colloquium NIKHEF march 2024

Higgs self-coupling: HEP's holy grail

The Higgs boson self-interaction is a key prediction of the Higgs mechanism

Loop effects yield an indirect determination at Higgs factory energy High-energy operation for a direct measurement of Higgs self-coupling

Top physics at e+e-

From: arXiv:2206.08326

Complementarity pp vs. e+e-HL-LHC provides constraints on qqtt: HL-LHC ttX & e⁺e⁻ for top+boson operators: High-E e⁺e⁻ excellent bounds on eett:

O(1), ~3x better than today O(10⁻¹) O(10⁻²)

Expect the unexpected

Colliders as Quantum Information laboratories

ATLAS has shown that top quark pairs are entangled at the LHC arXiv:2311.07288, Nature editor's pick

According to this GGI workshop, collider experiments can:

- measure steering & discord
- perform full quantum tomography
- test Bell inequalities (w. loopholes)
- study entanglement in $H \rightarrow WW$
- study entanglement over decays

See also: arXiv:2402.07972

What can e+e- colliders bring? Which e+e- collider does best? We don't know (yet).

The Higgs/top/EW factory^(*): when and where?

(*) I assume one will be built, but see: Blondel & Janot, Circular and linear e⁺e⁻ colliders: another story of complementarity, arXiv:1912.11771

Politics: comparison of main figures of merit (according to Snowmass Collider Implementation Task Force)

1) for two experiments, 2) accurate beam energy 3) polarized beams enhance cross sections

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
FCC-ee ^{1,2}	0.24	7.7(28.9)	0-2	13-18	12-18	290
	(0.09-0.37)					
$CEPC^{1,2}$	0.24	8.3 (16.6)	0-2	13-18	12-18	340
	(0.09-0.37)					
ILC ³ - Higgs	0.25	2.7	0-2	<12	7-12	140
factory	(0.09-1)					
CLIC ³ - Higgs	0.38	2.3	0-2	13-18	7-12	110
factory	(0.09-1)					
CCC^3 (Cool	0.25	1.3	3-5	13-18	7-12	150
Copper Collider)	(0.25 - 0.55)					
CERC ³ (Circular	0.24	78	5-10	19-24	12-30	90
ERL Collider)	(0.09-0.6)					
ReLiC ^{1,3} (Recycling	0.24	165 (330)	5-10	> 25	7-18	315
Linear Collider)	(0.25-1)					
ERLC ³ (ERL	0.24	90	5-10	> 25	12-18	250
linear collider)	(0.25-0.5)					
XCC (FEL-based	0.125	0.1	5-10	19-24	4-7	90
$\gamma\gamma$ collider)	(0.125 - 0.14)					
Muon Collider	0.13	0.01	> 10	19-24	4-7	200
Higgs Factory ³						

More complete report

Colloquium NIKHEF march 2024

Higgs factory

+ERL

Exotic HF

More figures of merit

Carbon footprint of colliders https://arxiv.org/pdf/2307.04084.pdf

A Sustainability Roadmap for C³

Martin Breidenbach, Brendon Bullard, Emilio Alessandro Nanni, Dimitrios Ntounis $^{\dagger},$ Caterina Vernieri

SLAC National Accelerator Laboratory [†]& Stanford University

Complete ISO life-cycle assessment ongoing for several projects

Lessons: construction of the facility (boring, concrete+steel for tunnel) has a large impact, more than the collider itself, or energy consumption during operation.

- Underlines importance of keeping projects compact
- Optimize project design to minimize impact

(example: CLIC drive beam vs. Klystrons)

Colloquium NIKHEF march 2024

Higgs/top/EW factory project progress

Feasibility involves geology, road access, power supply, etc., but above all **political and financial support**

Parameter	unit	2018 CDR [1]	2023 Optimised
Total circumference	\mathbf{km}	97.75	90.657
Total arc length	\mathbf{km}	83.75	76.93
Arc bending radius	\mathbf{km}	13.33	12.24
Arc lengths (and number)	\mathbf{km}	8.869(8), 3.2(4)	9.617(8)
Number of surface sites	_	12	8
Number of straights		8	8
Length (and number) of straights	km	1.4(6), 2.8(2)	1.4(4), 2.031(4)
superperiodicity		2	4

FCC mid-term report to CERN council, http://cds.cern.ch/record/2888566?In=en https://doi.org/10.17181/mhas5-1f263

ILC: CERN-KEK agreement for common R&D programme

CEPC: Chinese Academy of Sciences pre-selects CEPC

US P5 panel provides recommendations https://www.usparticlephysics.org/2023-p5-report/

Summary

Colliders are a crucial tool to study fundamental particles and their interactions, exploring higher energy, new particles and new processes

With the LHC in full swing and HL-LHC getting closer:

- Higgs discovery turns into characterization
- searches leave no stone unturned up to several TeV
- new SM physics: vector-boson-scattering, tri-boson, top+X, tttt... HH

A new e+e- collider can complete the program of the EW scale

- per-mille-level characterization of the Higgs, top and EW sectors
- precise tests of the relations predicted by the Standard Model
- redundant characterization of the SM and SM Effective Field Theory

The long game

The success of the LHC is possible thanks to people in the '80s...

...doodling magnet designs, dreaming up the physics case, tinkering with new detectors

Sustainable exploration of the fundamental laws of nature needs a long-term view and requires long-term investments

Four main contenders:

Project	Туре	Energy (GeV)	Design report	Host
ILC	linear	(91)-250-500-1000	TDR 2012	Japan
CLIC	linear	380-1500-3000	CDR 2013	CERN
CEPC	circular	91-240-360	CDR 2018	China
FCCee	circular	91-240-365	CDR 2019	CERN

Four "Higgs/EW/top factory" projects.

Note: The CLIC Higgs factory stage operates at 380 GeV. FCCee stretches to reach the top threshold at 365 GeV, ILC/CLIC have a "GigaZ" option.

Running constants

Quark masses – parameters of the QCD Lagrangian – must run too

$$\frac{\partial m_q(\mu)}{\partial \log(\mu^2)} = \gamma_m[\alpha_s(\mu)] \, m_q(\mu) \qquad \text{Anomalous mass dimension}$$

Scale evolution or "running" experimentally confirmed:

- charm quark mass, HERA [Ghizko et al., PLB775 (2017)]

- bottom quark mass, DELPHI,SLD,ALEPH,OPAL, see cf. Kluth [hep-ex/0603011])

- top quark mass, CMS[PLB803 (2020)] (see also Catani et al., JHEP08 (2020))

Accelerator R&D: most relevant new developments

Technology progress:

- High-efficiency klystrons (good for all projects): CERN&IHEP push to 80%
- High-gradient SCRF cavities: FNAL&IHEP push > 40 GV/m

Design studies:

- Energy-recovery LINACs, boost luminosity of e+e- colliders, https://arxiv.org/abs/1909.04437 + first conceptual designs for real machines
- Cool Copper Collider, shrink Higgs factory to 8 km facility, https://arxiv.org/abs/2203.07646
- Hybrid, asymmetric wakefield & RF collider, shrink Higgs factory to 3.3 km facility, https://arxiv.org/abs/2303.10150
- Muon collider (the μC is back!), energy-efficient multi-TeV lepton collisions https://arxiv.org/abs/2209.01318

Global R&D progress is pushing accelerator technology; several new collider concepts have been launched in recent years

Precision: theory predictions at lepton colliders

X. Chen et al., Heavy-quark pair production at lepton colliders at NNNLO in QCD, arXiv:2209.14259

Still need: NNLO EW corrections + ISR + threshold matching + offshell

Top mass at LHC & HL-LHC, interpretation

+ Snowmass report arXiv:2209.11267 arXiv:2203.08064

Direct mass measurements are experimentally the most precise mt ~ 172.52 ± 0.33 GeV (ATLAS+CMS run 1 combination)

J/psi and sec. vertex methods are starting to deliver (CMS sec. Vtx., ATLAS soft-muon)

Boosted top mass improving rapidly CMS 2.5 GeV in $2020 \rightarrow 0.8$ GeV in 2023

Cross-section-based mass extractions achieve O(1 GeV) precision/measurement. Theorist's combined fit yields 400 MeV (Zenaiev & Moch,).

Status quo interpretation: "the difference between the top mass in direct measurements and the top pole mass is of the order of few hundred MeV", Corcella, Nason, Hoang, Yokoya, arXiv:1902.04070

Combination of direct measurements:200 MeV (exp.) + ?? (theo.)Combination of x-sec-based extractions:500 MeV (theo.+exp.)

The cost estimate presented here only concerns FCC-ee with two IPs and the first three stages of operation. All cost estimates have been prepared in Swiss francs (CHF), assuming 1 EUR = 1 CHF and in 2023 prices (without provisions for future inflation).

The FCC-ee project has been broken down into a Work Breakdown Structure (WBS), based on the six following main domains:

- Accelerators: 3 847 MCHF
- Injectors & transfer lines: 585 MCHF
- Civil engineering: 5 538 MCHF
- Technical infrastructure: 2 490 MCHF
- Experiments (CERN contribution only, including host lab responsibilities): 150 MCHF
- Territorial development: 191 MCHF

The total cost for FCC-ee, with two IPs for the experiments and the first three stages of operation (Z, W and ZH) is currently estimated to be 12 801 MCHF.

The total additional cost for two further IPs for experiments has been estimated at 710 MCHF. To operate FCC-ee at the t⁻t energy level would require an additional investment in RF equipment, together with the associated cryogenic equipment. The total extra amount is estimated at 1 465 MCHF.