Nonlocality and entanglement in quantum information

Jordi Tura
AQA
Leiden university

Theory Meets Experiment - Quantum Observables March 2024

Formalism of quantum mechanics

States

Contains the whole description of the system: $|\psi\rangle \in \mathcal{H}$
Example: $|\psi\rangle=\frac{1}{\sqrt{2}}|\uparrow\rangle+\frac{1}{\sqrt{2}}|\downarrow\rangle \in \mathcal{H} \cong \mathbb{C}^{2}$

Multipartite system
$|\psi\rangle \in \mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \ldots \quad$ (Notation: $\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \equiv\left|\psi_{1} \psi_{2}\right\rangle$)
Example: $\left|\psi^{+}\right\rangle=\frac{1}{\sqrt{2}}|\uparrow \uparrow\rangle+\frac{1}{\sqrt{2}}|\downarrow \downarrow\rangle \in \mathcal{H} \otimes \mathcal{H} \cong \mathbb{C}^{4}$

Measurement
Set of projective operators $\{|a\rangle\langle a|\}_{a}$

$$
\left|\psi_{\text {post-meas }}\right\rangle=\frac{\langle a \mid \psi\rangle}{\sqrt{P(a \mid \psi)}}|a\rangle \quad, \quad P(a \mid \psi)=|\langle a \mid \psi\rangle|^{2}
$$

Formalism of quantum information

States
Description of what is accessible (stat.mix.): $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$
Example: $\rho=\frac{1}{2}|\uparrow\rangle\langle\uparrow|+\frac{1}{2}|\downarrow\rangle\langle\downarrow|$

Multipartite system
$\rho_{A B C} \ldots \in \operatorname{Endo}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B} \otimes \ldots\right)$

Example: $\rho=\frac{1}{2}|\uparrow \uparrow\rangle\langle\uparrow \uparrow|+\frac{1}{2}|\downarrow \downarrow\rangle\langle\downarrow \downarrow|$

Measurement
Set of positive operators $\left\{F_{a}\right\}_{a}$ satisfying $\sum_{a} F_{a}=\mathbb{I}$

$$
\rho_{\text {post-meas }}=\frac{U \sqrt{F_{a}} \rho{\sqrt{F_{a}}}^{\dagger} U^{\dagger}}{P(a \mid \rho)} \quad, \quad P(a \mid \rho)=\operatorname{tr}\left(F_{a} \rho\right)
$$

where U is a unitary operator.

Formalism of quantum information - Remarks

Superposition

$$
|\psi\rangle=\frac{1}{\sqrt{2}}|\uparrow\rangle+\frac{1}{\sqrt{2}}|\downarrow\rangle
$$

Mixed state

$$
\left.\rho=\frac{1}{2}|\uparrow\rangle \uparrow \uparrow\left|+\frac{1}{2}\right| \downarrow\right\rangle\langle\downarrow|
$$

$|\psi\rangle$ and ρ don't represent the same system!

$$
\left.|\psi\rangle\langle\psi|=\frac{1}{2}(|0\rangle 0|+| 0\rangle\langle 1|+|1\rangle\langle 0|+|1\rangle\langle 1|\right) \neq \rho
$$

Multipartite states

Separable state
Use only local operations and classical communication (LOCC)

$$
\rho_{A B \ldots}=\sum_{i} p_{i} \rho_{A}^{(i)} \otimes \rho_{B}^{(i)} \otimes \ldots
$$

Example: $\rho_{A B}=\frac{1}{2}|\uparrow\rangle\langle\uparrow| \otimes|\uparrow\rangle\langle\uparrow|+\frac{1}{2}|\downarrow\rangle\langle\downarrow| \otimes|\downarrow\rangle\langle\downarrow|$

Entangled state

$$
\rho_{A B} \text { is not separable }
$$

Example: $\rho_{A B}=\frac{1}{2} \frac{\mathbb{I}_{4}}{4}+\frac{1}{2}\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|$, with $\left|\Psi^{+}\right\rangle:=\frac{|\uparrow \uparrow\rangle+|\psi \downarrow\rangle}{\sqrt{2}}$

Detect entanglement

Positive partial transpose (PPT) criterion ${ }^{1,2}$

$$
\rho_{A B} \text { separable } \Rightarrow \rho_{A B}^{T_{B}}=\sum_{i} p_{i} \rho_{A}^{(i)} \otimes \rho_{B}^{(i) T} \succeq 0
$$

K-symmetric extensions ${ }^{3,4}$
$\rho_{A B}$ separable $\Leftrightarrow \forall k, \exists \rho_{A B_{1} B_{2} \ldots B_{k}}$ such that $\rho_{A B_{i}}=\rho_{A B}, \forall i$

[^0]
Mixture of entangled and noisy state

Werner state ${ }^{5}$

$$
\rho_{A B}=\lambda\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|+(1-\lambda) \frac{\mathbb{I}_{4}}{4}
$$

[^1]
Limitations of the model

What is ρ ? What is the Hilbert space?

Limitation of the model

Problem

Models assume ideal/simplistic setup and conditions
\Rightarrow state we have is not the one we expect
Solution
Look directly at the correlations of the device
\Rightarrow Bell tests

Bell test

Device: $x, y \rightarrow a, b$

Repeat experiment $\Rightarrow P(a, b \mid x, y)$

Correlation types

Local hidden variable (LHV) correlations ${ }^{6}$

$$
P(a, b \mid x, y)=\int_{\Lambda} d \lambda q(\lambda) P(a \mid x, \lambda) P(b \mid y, \lambda)
$$

Quantum correlations

$$
P(a, b \mid x, y)=\operatorname{Tr}\left[\left(M_{x}^{(a)} \otimes M_{y}^{(b)}\right) \rho_{A B}\right]
$$

Bell inequality

Bell expression

$$
I[P]:=\sum_{a, b, x, y} \alpha_{a b x y} P(a, b \mid x, y)
$$

For wisely chosen $\alpha_{a b x y}$, we can find $P \in$ Quantum s.t.

$$
I[P]>\max _{P \in \text { Local }} I[P]
$$

Example: CHSH inequality

$$
\left.\sum_{a, b, x, y=0}^{1}(-1)^{a+b+x y} P(a, b \mid x, y) \leq 2 \quad \text { (local bound }\right)
$$

Quantum bound: $2 \sqrt{2}$

Sets of quantum states and correlations

Set of correlations

Set of quantum states

Entangled is not enough!

Werner state

$$
\rho_{A B}=\lambda|\Psi\rangle\langle\Psi|+(1-\lambda) \frac{\mathbb{I}_{4}}{4}
$$

Quantum information in HEP

Testing Bell inequalities in Higgs boson decays

Alan J. Barr

Department of Physics, Keble Road, University of Oxford, OX1 3RH and Merton College, Merton Street, Oxford, OX1 $4 J D$
(Dated: First submitted: 2 June 2021. This version: July 27, 2022)
Higgs boson decays produce pairs of W bosons in a maximally entangled state, the spins of which can be expected to violate Bell inequalities. We show that the spin density matrix of the $W^{ \pm}$ pair may be reconstructed experimentally from the directions of the charged lepton decay products, and from it the expectation values of various Bell operators determined. Numerical simulations of $H \rightarrow W W^{*}$ decays indicate that violation of a generalised CHSH inequality is unlikely to be measurable, however the CGLMP inequality is near-maximally violated. Experimental Bell tests could be performed at a variety of colliders and in different production channels. If reconstruction effects and backgrounds can be controlled then statistically significant violations could be observable even with datasets comparable to those already collected at the LHC.

Quantum state tomography, entanglement detection and Bell violation prospects in weak decays of massive particles

Rachel Ashby-Pickering, ${ }^{\text {a }}$ Alan J. Barr, ${ }^{a, b}$ Agnieszka Wierzchucka ${ }^{a, b}$
${ }^{\text {a }}$ Department of Physics, Keble Road, University of Oxforl, OX1 3RH
${ }^{6}$ Merton College, Merton Street, Oxford, OX $14 J D$

E-mail: alan.barr@physics.ox.ac.uk
ABSTRACT: A rather general method for determining the spin density matrix of a multiparticle system from angular decay data is presented. The method is based on a Bloch parameterisation of the d-dimensional generalised Gell-Mann representation of ρ and exploits the associated Wigner- and Weyl-transforms on the sphere. Each parameter of a (possibly multipartite) spin density matrix can be measured from a simple average over an appropriate set of experimental angular decay distributions. The general procedures for both projective and non-projective decays are described, and the Wigner P and Q symbols calculated for the cases of spin-half, spin-one, and spin- $3 / 2$ systems. The methods are used to examine Monte Carlo simulations of $p p$ collisions for bipartite systems: $p p \rightarrow W^{+} W^{-}$ $p p \rightarrow Z Z, p p \rightarrow Z W^{+}, p p \rightarrow W^{+} \bar{t}, t \bar{t}$, and those from the Higgs boson decays $H \rightarrow W W^{*}$ and $H \rightarrow Z Z^{*}$. Measurements are proposed for entanglement detection, exchange symmetry detection and Bell inequality violation in bipartite systems

Suggestion for Einstein-Podolsky-Rosen Experiments
 Using Reactions Like $e^{+} e^{-} \rightarrow \Lambda \bar{\lambda} \rightarrow \pi^{-} p \pi^{+} \bar{p}$

Nils A. Törnquist ${ }^{1}$

Received July 9, 1980

Since weakly decaying particles are their own polarimeters, reactions like $ग_{\mathrm{c}} \rightarrow A \bar{\Lambda}, \psi \rightarrow A \bar{A}, \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$, etc. are interesting for testing the nonlocality of quantum mechanical predictions. Although such reactions, in principle, do not exclude all classes of hidden variable theories, they can be used to complement current experiments with external polarimeters. The reaction $\eta_{\mathrm{c}} \rightarrow \Delta \bar{\Lambda} \rightarrow \pi^{-} \mathrm{p} \pi^{+} \overline{\mathrm{p}}$ is conceptually the simplest and most useful as a gedanken experiment, although it has not yet been seen experimentally. The reaction $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \vec{\Lambda} \rightarrow \pi^{-} \mathrm{p} \pi^{+} \overline{\mathrm{p}}$ near threshold or at the ψ resonance can be used for essentially the same test. This is feasible with presently available data and would be the first EPR experiment involving weak interactions.

Quantum entanglement and Bell inequality violation at colliders

[^2]The study of entanglement in particle physics has been gathering pace in the past few years. It is a mew feld that is providing important results about the possibility of detecting entanglement and testing. Bell inequality at colliders for final states as diverse as top-quark of T -leptoa pairs, massive gauge bosons and vector mesons. In this review, after presenting definitions, tools and basic results that are necessary for understanding these developments, we summarize the main findings as published up to the ead of year 2023. These investigations have been mostly theoretical since the experiments are only now catching up, with the notable exception of the observation of entanglement in top-quark pair production at the Large Hadron Collider. We include a detailed discussion of the results for both qubit and qutrits systems, that is, final states containimg spin one-half and spin one particles. Entanglement has also been proposed as a new tool to constrain new particles and fields beyond the Standard Model and we introduce the reader to this promising feature as well.

Bell inequalities - Loopholes

Locality loophole
Alice and Bob devices communicate

Detection loophole
Set of detected events is an unfair sample

Superdeterminism loophole
No free will. Everything (even the measurement choices) is governed by the same random variable.

Conclusion

Separable VS Entangled states

- PPT criterion, K-symmetric extension, ...
- Entangled but still admits LHV model

Local VS Nonlocal correlations

- Bell test
- LHV model is not enough to describe QM
- Loopholes: locality, detection, "free will",. .

Bell inequality in HEP - example 1

Suggestion for Einstein-Podolsky-Rosen Experiments Using Reactions Like $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \Lambda \overline{\boldsymbol{\lambda}} \rightarrow \pi^{-} \boldsymbol{p} \pi^{+} \overline{\boldsymbol{p}}$

Nils A. Törnquist ${ }^{1}$

Received July 9, 1980

Since weakly decaying particles are their own polarimeters, reactions like $\eta_{\mathrm{e}} \rightarrow \Lambda \bar{\Lambda}, \psi \rightarrow \Lambda \bar{\Lambda}, \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$, etc. are interesting for testing the nonlocality of quantum mechanical predictions. Although such reactions, in principle, do not exclude all classes of hidden variable theories, they can be used to complement current experiments with external polarimeters. The reaction $\eta_{\mathrm{c}} \rightarrow \Lambda \bar{\Lambda} \rightarrow \pi^{-} \mathrm{p} \pi^{+-} \overline{\mathrm{p}}$ is conceptually the simplest and most useful as a gedanken experiment, although it has not yet been seen experimentally. The reaction $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda} \rightarrow \pi^{-} \mathrm{p} \pi^{+} \overline{\mathrm{p}}$ near threshold or at the ψ resonance can be used for essentially the same test. This is feasible with presently available data and would be the first EPR experiment involving weak interactions:

Bell inequality in HEP - example2

Testing Bell inequalities in Higgs boson decays

Alan J. Barr
Department of Physics, Keble Road, University of Oxford, OX1 3RH and
Merton College, Merton Street, Oxford, OX1 4JD
(Dated: First submitted: 2 June 2021. This version: July 27, 2022)

Higgs boson decays produce pairs of W bosons in a maximally entangled state, the spins of which can be expected to violate Bell inequalities. We show that the spin density matrix of the $W^{ \pm}$ pair may be reconstructed experimentally from the directions of the charged lepton decay products, and from it the expectation values of various Bell operators determined. Numerical simulations of $H \rightarrow W W^{*}$ decays indicate that violation of a generalised CHSH inequality is unlikely to be measurable, however the CGLMP inequality is near-maximally violated. Experimental Bell tests could be performed at a variety of colliders and in different production channels. If reconstruction effects and backgrounds can be controlled then statistically significant violations could be observable even with datasets comparable to those already collected at the LHC.

Quantum state tomography for HEP

Quantum entanglement and Bell inequality violation at colliders

Alan J. Barr $\mathbb{C}^{\text {a,b }}$, Marco Fabbrichesi $\mathbb{C}^{c, *}$, Roberto Floreanini © ${ }^{c}$, Emidio Gabrielli © ${ }^{\text {d,c.e }}$, Luca Marzola © \mathbb{D}^{e}
${ }^{\text {a Department of Physics, Keble Road, University of Oxfond, OX1 3RH }}$
${ }^{\mathrm{b}}$ Merton College, Merton Sireet, Oxford, OX1 $4 J D$
${ }^{c}$ INFN, Sezione di Trieste, Via Valerio 2, I-34127 Trieste, Italy
d Physics Department, University of Trieste, Strada Costiera 11, 1-34151 Trieste, Italy ${ }^{\text {E }}$ Laboratory of High-Energy and Computational Physics, NICPB, Rävala pst. 10, 10149 Tallinn, Estonia

Abstract

The study of entanglement in particle physics has been gathering pace in the past few years. It is a new field that is providing important results about the possibility of detecting entanglement and testing Bell inequality at colliders for final states as diverse as top-quark or τ-lepton pairs, massive gauge bosons and vector mesons. In this review, after presenting definitions, tools and basic results that are necessary for understanding these developments, we summarize the main findings as published up to the end of year 2023. These investigations have been mostly theoretical since the experiments are only now catching up, with the notable exception of the observation of entanglement in top-quark pair production at the Large Hadron Collider. We include a detailed discussion of the results for both qubit and qutrits systems, that is, final states containing spin one-half and spin one particles. Entanglement has also been proposed as a new tool to constrain new particles and fields beyond the Standard Model and we introduce the reader to this promising feature as well.

Key point: reconstructing the density matrix

Before doing anything, we need to get the density matrix. Is there a way to bypass the density matrix reconstruction \rightarrow to discuss

Quantum state tomography for HEP

Quantum state tomography, entanglement detection and Bell violation prospects in weak decays of massive particles

Rachel Ashby-Pickering, ${ }^{a}$ Alan J. Barr, ${ }^{a, b}$ Agnieszka Wierzchucka ${ }^{a, b}$
${ }^{a}$ Department of Physics, Keble Road, University of Oxford, OX1 3RH
${ }^{6}$ Merton College, Merton Street, Oxford, OX1 $4 J D$
E-mail: alan.barr@physics.ox.ac.uk

Abstract: A rather general method for determining the spin density matrix of a multiparticle system from angular decay data is presented. The method is based on a Bloch parameterisation of the d-dimensional generalised Gell-Mann representation of ρ and exploits the associated Wigner- and Weyl-transforms on the sphere. Each parameter of a (possibly multipartite) spin density matrix can be measured from a simple average over an appropriate set of experimental angular decay distributions. The general procedures for both projective and non-projective decays are described, and the Wigner P and Q symbols calculated for the cases of spin-half, spin-one, and spin- $3 / 2$ systems. The methods are used to examine Monte Carlo simulations of $p p$ collisions for bipartite systems: $p p \rightarrow W^{+} W^{-}$, $p p \rightarrow Z Z, p p \rightarrow Z W^{+}, p p \rightarrow W^{+} \bar{t}, t \bar{t}$, and those from the Higgs boson decays $H \rightarrow W W^{*}$ and $H \rightarrow Z Z^{*}$. Measurements are proposed for entanglement detection, exchange symmetry detection and Bell inequality violation in bipartite systems.

[^0]: ${ }^{1}$ Peres, Asher. "Separability Criterion for Density Matrices." Physical Review Letters 77
 ${ }^{2}$ Horodecki, Michat, Pawet Horodecki, and Ryszard Horodecki. "Separability of Mixed States: Necessary and Sufficient Conditions." Physics Letters A 223, no. 1
 ${ }^{3}$ Fannes, M., J. T. Lewis, and A. Verbeure. "Symmetric States of Composite Systems." Letters in Mathematical Physics 15, no. 3
 ${ }^{4}$ Raggio, G. A., and R. F. Werner. "Quantum Statistical Mechanics of General Mean Field Systems"

[^1]: ${ }^{5}$ Werner, Reinhard F. "Quantum States with Einstein-Podolsky-Rosen Correlations Admitting a Hidden-Variable Model." Physical Review A 40, no. 8 (October 1, 1989)

[^2]: Abstract

