Oscillation systematics: Swim

Víctor Carretero 31/01/2024 Nikhef Group Outing

Oscillation probabilities

Assuming neutrinos propagate as plain waves and that they are ultrarrelativistics:

$$P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \nu_{\beta} | \nu_{\alpha} \rangle|^{2} = \sum_{ii} U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} e^{-i\frac{\Delta m_{ij}^{2}L}{2E}},$$

Assuming **two** flavour approximation:

- The mixing angle drives the **amplitude**.
- The mass splitting drives the **frequency**.

$$P(
u_{\mu}
ightarrow
u_{e})(t) = \sin^{2} 2 heta \sin^{2} \left(rac{\Delta m_{21}^{2}L}{4E}
ight)$$

$$P(\nu_{\mu} \rightarrow \nu_{\mu})(t) = 1 - P(\nu_{\mu} \rightarrow \nu_{e})(t) = 1 - \sin^{2} 2\theta \sin^{2} \left(\frac{\Delta m_{21}^{2}L}{4E}\right)$$

Matter effects

Neutrinos interact with matter via charged and neutral current interactions. Since ordinary matter contains **electrons** but not muons or taus, a difference is introduced in how electron neutrinos propagate that affect oscillations.

$$\begin{split} H(x) &= U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U^{\dagger} + \begin{pmatrix} V(x) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ V &= \pm \sqrt{2} G_F n_e(x) \\ \sin^2 2\theta_{13}^M &= \sin^2 2\theta_{13} \left(\frac{\Delta m_{31}^2}{\Delta^M} \right)^2 , \\ \Delta^M &= \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - 2VE)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2}. \end{split}$$

Statistical method

- **2D binned** analysis in reconstructed energy and cosine of the zenith angle.
- Log-likelihood ratio coming from Poisson statistics with respect to the saturated model.
- Model is fitted minimizing the negative log-likelihood ratio by varying all its parameters (θ).
- Systematics (oscillation + nuisance) parameters (v) could be accounted for by a prior, that comes from external experiments or previous knowledge. Gaussian distribution assumed, adding the prior as a penalty term.

$$-2\ln\lambda(\vec{\theta},\vec{\nu}) = 2\sum_{i=1}^{N} \left[\mu_i(\vec{\theta},\vec{\nu}) - n_i + n_i\ln\frac{n_i}{\mu_i(\theta)}\right] + \sum_l \left(\frac{\nu_l - \langle\nu_l\rangle}{\sigma_l}\right)^2$$

Nuisance parameters

Norm, Flux (Shape) and Detector systematics.

- Norm Systematics: Applied as a scaling of a histogram.
 - Class Norms
 - Tau Norm (CC only or CC+NC)
 - NC Scale
 - Muon Norm.
- Shape Systematics:
 - Flavour ratio: v_{μ} /anti- v_{μ} skew, v_{e} /anti- v_{e} skew, v_{μ}/v_{e} skew
 - Energy Slope.
 - Zenith Slope
- Detector effect systematics:
 - Energy Scale
 - High Energy Light Simulation

Shape systematics

• Zenith Slope and Energy Slope. They represent the uncertainties in energy and direction of our flux, applied as a power expansion:

 $\tilde{\phi}(E,\theta) = f_{\text{shape}}\phi(E,\theta) = E^{-s_{\text{energy}}}(1 + s_{\text{up/hor}}|\cos\theta|)\phi(E,\theta),$

• The choice in the zenith slope is made to have an up/horizontal effect instead of an up/down effect.

Shape flux systematics

• Flux skews. They represent the skew in the ratio of numu/anumu, nue/anue and numu/nue.

$$f_{\overline{e}} = (1 + s_{e\mu}) \cdot (1 + s_{e\overline{e}})$$

$$f_{\overline{e}} = (1 + s_{e\mu}) \cdot (1 - \frac{l_e}{l_{\overline{e}}} s_{e\overline{e}})$$

$$f_{\mu} = (1 - \frac{l_e + l_{\overline{e}}}{l_{\mu} + l_{\overline{\mu}}} s_{e\mu}) \cdot (1 + s_{\mu\overline{\mu}})$$

$$f_{\overline{\mu}} = (1 - \frac{l_e + l_{\overline{e}}}{l_{\mu} + l_{\overline{\mu}}} s_{e\mu}) \cdot (1 - \frac{l_{\mu}}{l_{\overline{\mu}}} s_{\mu\overline{\mu}})$$

Systematic implementation (Shape)

• They are all applied assuming a **conservation of the total incident flux.** (Renormalisation)

$$I_x = \int \int \phi_x(E,\theta) dE d\theta.$$

 $I_{e} + I_{\overline{e}} + I_{\mu} + I_{\overline{\mu}} = \tilde{I}_{e} + \tilde{I}_{\overline{e}} + \tilde{I}_{\mu} + \tilde{I}_{\overline{\mu}}$

$$\int \int \overline{\phi}(E,\theta) \equiv \int \int \phi(E,\theta) E^{-s_{\text{energy}}} (1 + s_{\text{up/hor}} |\cos \theta|) = \int \int \phi(E,\theta)$$

Response Matrix

• Response matrix first computed as a generation weights matrix. Then the "efficiency" is computed by "removing" cross-sections.

$$R_{\nu_x}^c = \frac{m_p}{2\pi\Delta E\Delta\cos\theta\Delta yM} \frac{\sum_i w_{\text{gen},i,\nu_x}^c \frac{t_i}{\sum_j t_j}}{\frac{d\sigma_{\nu_x}}{dy}}.$$

• Energy scale can be applied directly to this matrix.

Energy Scale

- In reality, there are two response matrices:
 - P_TV gives the probability of having some visible energy E_V, given some true neutrino energy E_T
 - P_VR gives the probability of having some reco energy E_R, given some visible energy E_V
- But we only have access in principle to a combination of the two:
 - P_TR gives the probability of having some reco energy E_R, given some true neutrino energy E_T
- We shift the bins of true energy in the Response Matrix to emulate the effect of the uncertainty in water properties and quantum efficiencies.

 $N(E_R) = \int \int P_{VR}(E_R, E_V) \times P_{TV}(E_V + \delta E, E_T) \times \sigma(E_T) \times \phi(E_T) \times P_{osc}(E_T) \ dE_V dE_T$

 $P_{TR}(E_R, E_T, \delta E) = \int P_{VR}(E_R, E_V) P_{TV}(E_V + \delta E, E_T) dE_V$

assuming: $P_{TV}(E_V + \delta E, E_T) = P_{TV}(E_V, E_T - \delta E)$

 $N(E_R) = \int P_{TR}(E_R, E_T - \delta E) \times \sigma(E_T) \times \phi(E_T) \times P_{osc}(E_T) \ dE_T$

Compare with IceCube

					\ \
	Parameter	Prior	Fit value	Pull (σ)	
 E scale: 9% 	Detector	Baseline from calibration data			
	DOM efficiency	10%	+6%	0.63	effects
E clone: 02	Rel. eff. p_0	Unconstrained	-0.27	-	
• E slope. 0.3	Rel. eff. p_1	Unconstrained	-0.04	-	
/ . 00/	Ice absorption	Unconstrained	-3%	-	
• V ₀ /V ₁₁ : 2%	Ice scattering	Unconstrained	-1%	-	,
μ	Flux	Baseline from Honda et al.			
• up/horiz: 2%	$\Delta \gamma_{\nu}$	0.1	+0.07	0.7	/ Change in
	$\Delta \pi^{\pm}$ yields [A-F]	30%	+10%	0.35	9 particlos
• v. / anti-v. 7%	$\Delta \pi^{\pm}$ yields G	30%	-6%	-0.18	- particles
ve vand ve vo	$\Delta \pi^{\pm}$ yields H	15%	-2%	-0.12	from CR
• $v / anti-v \cdot 5\%$	ΔK^+ yields W	40%	+8%	0.21	
	ΔK^- yields W	40%	-1%	-0.02	
• NC norm: 20%	ΔK^+ yields Y	30%	+11%	0.35	I
	Cross-section	Baseline from (GENIE		Annart from
• Tou norm: 200/	M_A^{CCQE}	0.99 GeV +25%	+1%	0.03	Арритепон
	MACCRES	$1.12 \text{ GeV} \pm 20\%$	+11%	0.57	\bigvee NC scale they
• Atm muono froo	ONC/OCC	20%	+13%	0.63	
• Aun muons nee	DIS CSMS	1.0	0.04	0.04	apply GENIE
	Atm. muons	Baseline from (Gaisser et al	.+Sibyll2.1	changes
• PID class norms: free	Atm. μ scale	Unconstrained	+39%	-	changes.
L	Normalisation	Baseline from c	alibration+	flux models	
 Jsirene-norm : 50% 	A_{eff} scale	Unconstrained	-18%		Single Norm

13

Conclusions

- Our weakest point is the energy response of the detector.
- Implement a template approach as IceCube is a priority.
- Simulate absorption and QE of PMTs and redo MC, then extract the template and use it for the fits.
- Different approach for flux than them, no necessarily wrong.
- We use too many free normalisations.