
Fed’ing SSH: Some Recent Work

• Outline: Problems – Solutions – SSH certs – DeiC’s solution
• SSH is here to stay – how to leverage web-based fed IDs there? Gap.
• T&I Incubator aut22: Workshops (RI and webfed people) identified 

actual problems and existing solutions in this space. Some findings:
• SIs widely ‘borrow’ PIs’ private keys to avoid too-cumbersome onboarding.
• Non-trivial for admins to keep track of what public keys to offboard when.
• SSH and webfed largely separate communities, co-op. would be beneficial:

• Expanding scope of webfed + solving such SSH security, usability and scalability issues.
• Solutions for web fed’ing SSH already exist, both $ and community OS.

• OS solution teams formed group, agreed on co-op’ing to improve.

Mikkel Hald, DeiC; mikkel.hald@deic.dk



6 Community OS Solutions for Federating SSH
DAASI 

FedSSH
DEIC

SSH certs
KIT

SSH OIDC
SURF PAM 
WebSSO

JISC
Moonshot

STFC SSH 
OIDC

Key sharing 
mitigated?

✅ ✅ ✅ ✅ ✅

Client 
requirements Vanilla Vanilla mccli+oidc-

agent Vanilla Moonshot

Server 
requirements Smart shell Vanilla

PAM 
module+M

C
PAM module Moonshot

Supported 
platforms Interactive All All Interactive All

Delegation ✅ ✅ ✅ ❌ ✅

Provisioning Possible Possible ✅ ❌ ✅

Revocation ✅ Short TTL ✅ ✅ ✅

MFA possible? ✅ ✅ ✅ ✅ ✅



Leveraging Std. SSH to the full:
What SSH certs are and what they can do

• Like X509: a pubkey + extra info (nbl. expiry), signed by a trusted CA.
• Eliminate (poorly scaling) per-user pubkeys management on server:
• User logs in presenting a SSH cert; server trusts its pubkey if signed by CA.
• Server only needs the pubkeys of trusted CAs (may trust more than 1). Easy.
• SSH certs contain expiry (set by CA), i.e. are auto-expiring per-user pubkeys.
• User ID part of cert – so trivial coupling of SSH session and user ID.

• Convey user ID and rights to SSH server front-channel:
• If user info in cert, no need for backend integrations; easy mlple-orgs sharing.
• Srv. could JIT-update (incl. create) local user account from cert per SSH login.

• Easy for CAs to issue based on a web SSO token (next slide):
• Essentially converting a web token to a SSH holder-of-key token (the cert).

• Part of standard SSH server and client software for 10+ years.



Webfed’ing it: DeiC’s SSH CA
• If user has no valid SSH cert in her terminal, she needs to visit the CA:
• The CA is an OIDC RP – she logs in using her federated institutional account.
• The CA in the browser generates a terminal ssh command with a token in it.
• User copies and executes command in terminal, thereby retrieving cert from 

CA containing expiry, user ID and perhaps VO group info and info from OIDC 
(or SAML) token (e.g. assurance). CA issued cert on pubkey revealed to it in user’s ssh call.

• Some benefits easily achieved with SSH certs and CA – in summary:
• No special client-side requirements but term+ssh-client (scalability, usability).
• No need for other credentials than user’s institutional login (scale, usability).
• SSH access tied to institutional web credentials – far less likely shared by PIs 

than private keys (security).
• No per-user pubkeys on server (security, scalability); negligible sshd config.
• No need for VO backend(s); easy sharing of srv. among orgs (CAs) (scalability).
• SSH server admin offloads IDM to IdP, AuthZ to fed VOs (the CAs) (scalability).

Warning: NO DEMO



Time for Questions and Discussion

• Open-source SSH teams group website:
• https://github.com/FederatedSSH

• DeiC’s SSH CA on GitHub:
• https://github.com/wayf-dk/ssh-certs-in-a-federated-world

• DeiC SSH CA people:
• Mads Freek Petersen mads.freek.petersen@deic.dk
• Tangui Coulouarn tangui.coulouarn@deic.dk
• Mikkel Hald mikkel.hald@deic.dk

https://github.com/FederatedSSH
https://github.com/wayf-dk/ssh-certs-in-a-federated-world

