Proposal for a modified InGrid on TPX3

Fred Hartjes

NIKHEF

Present chip dimensions

■ Microscope measurement wit accurate XY stage

- Active fraction of chip surface: 82.1\%

Width direction

Present (20-10-2016) situation

- On left and right side 3 pixel rows are obscured

■ Dyke width ~200 $\mu \mathrm{m}$

- No need to change

Chip top (opposite wire bonds)

Present (21-10-2016) grid design

■ Dyke quite wide: $377 \mu \mathrm{~m}$
■ But no pixels obscured

- In fact the chip is a bit (150-200 $\mu \mathrm{m}$) too long
- It may be hard to reduce the chip height
■ Ruled by interchip distance on the wafer and saw blade width

Wire bond side

- There ar 257 rows of holes in the grid
■ $1^{\text {st }}$ row above dummy pixels
■ Width dyke quite narrow: $204 \mu \mathrm{~m}$ to first hole row
- $50 \mu \mathrm{~m}$ insulation path over SU8
- But we need a wider dyke here

■ Making the HV connection
■ For HV safety we need more insulation path to the wire bonds and chip electronics

- We can easily enlarge the dyke

New proposal wire bond side

■ Omit the $257^{\text {th }}$ row of holes above the dummy pixels

- Broaden the dyke from 204 to 1600 $\mu \mathrm{m}$
■ From $1^{\text {st }}$ active hole row on
- Broaden the grid from 154 to 1400 $\mu \mathrm{m}$
■ Leaving sufficient space to support the guard electrode
- Insulation across the SU8 enlarged from 50 to $200 \mu \mathrm{~m}$

SPARE

■ In progress/ under discussion

List of parameters

■ Going from one chip to another on same carrier

- 3 pixels sacrificed
- Going from one chip to another on neighbouring carrier
- 4 pixels sacrificed
- 28.6 => 28.435

Mechanical			$r^{\text {a }}$						remarks
Item	Values (um)			Angle (mrad)		Reference			
	X	Y	Z	hor. Plane	vert. planı	X	Y	Z	
position InGrid of chips	± 20	± 20	± 20	1	1	PCB ref marks	PCB ref marks	foot T	
chip to chip distance	60								
last pixel Ch1 1st pixel CH2	16								
chip to chip distance mod 1 to $\bmod 2$	11								
last pixel mod1 to 1st pixel mod 2	22								
module to module pitch	2843								
position PCB ref marks	± 20	± 20	± 100	1	1	carrier edge	carrier edge	carrier foot	
Top guard electrode	± 50	± 50	500 ± 20	10		carrier edge	carrier edge	chip dyke	
chip edge to PBC		100							
chip dimension edge to edge		14130							
Electrical	Value								
Grid potential Vgrid (V)	$\sim-400 \pm 4$								
Grid supply resistor (Ω)	100M								each chip
drift field E (V/cm)	-100								
Guard potential (V)	Vgrid +E*Zguard								
Guard supply resistor (Ω)	100M								

Nikhef/Bonn LepCol meeting. Nikhef. Oct 22, 2016

Assembly / alignment method

- Mount PCB on carrier

■ Refer to two carrier edges using jig with reference marks
■ AND refer to reference marks on PCB
■ Mount chips on carrier
■ 2 chips on one side simultaneously
■ XY: refer to grid hole pattern
■ rough alignment using bonding pads ($\mathrm{N} \times 55 \mu \mathrm{~m}$)
■ AND refer to reference marks on PCB
■ Z: refer to grid (fixed height of alignment jig)

- Mount guard electrode

■ XY: refer edges to reference marks on PCB (tolerance $100 \mu \mathrm{~m}$)
■ Provide a 1 mm hole at the PCB reference marks
■ Z: let sides of the guard rest on dykes
■ Guard should fabricated bit hollow

- Module to module
- XY: refer to PCB reference marks

■ Sides
■ 2×3 pixels lost

dykes

- Top

■ No pixels lost
■ Bottom
■ No pixels lost

