

Laser measurements on single chip module

Fred Hartjes NIKHEF

Nikhef/Bonn LepCol meeting October 10, 2016

Why laser measurements?

- Fundamental method to measure drift paths and drift velocities in a drift volume in 3D
 - Classical electrostatic problem
 - Create a point charge Q in a parallel E-field at a given position in space and at a given time
 - Measure the travel time and hit position at an XY plane
- By doing an XYZ scan across the whole drift volume, we get a direct measurement of the drift trajectories and local drift velocities

- Using focused beam pulsed UV nitrogen laser (Nikhef type IA)
 - Near UV: 337 nm (3.7 eV)
 - < 1 ns duration

Pulse frequency ~ 3 Hz

- MOPA setup => near diffraction limit
- Beam diameter ~10 mm, focused at 60 mm focal length
 - Achromatic composite lens to avoid spherical aberration
- Ionization in chamber gas by <u>double photon</u> process
 - Proportional to square of light intensity
 - 2 * 3.7 = 7.4 eV
 - Tetra-Methyl-Phenylene-Diamine (TMPD) as ionizing compound
 - Concentration << 1 ppM
 - => highest ionization density (e⁻/cm) in focal area

Making laser ionization

Beam management

- Detector kept on fixed position, scanning with focal point
- Position of focal point exclusively determined by two parameters
 - Position of focussing lens
 - Direction of incoming beam
- Lens mounted on remotely controlled XYZ stage system
 - Allowing precise positioning with sub μm resolution
- Beam direction stabilized by two pentamirror systems
- Ionization tuned by neutral density wedge filter

Stages with two pentamirror sets + focussing lens

- Using TPX3 with InGrid from Yevgen
- Field cage from conductive plastic
 - Semitron ESD 490 HD
 - Top and bottom edge made conductive by silver paint
- Drift length ~15.5 mm
- Guard aperture 13.2 * 12.6 mm
 - Cutting part of active pixels
 - 12.6 of 14.1 mm

Coppered kapton 50 um

Single module setup

Fred Hartjes

- Detector assembled and installed
 - Chip H4 (class C)
- Services connected
 - Gas, HV, SPIDR board, stages
- Commissioning in progress
 - Remote control XYZ stages
 - Optical measurement of height of grid, guard electrode, cathode foil
 - Verifying voltage distribution along field cage
 - Entering the trigger time (fast photodiode) in SPIDR

Status

Running conditions

Tune gas gain to SE hit efficiency > 80%
Tune laser intensity such that hit efficiency per pixel per laser shot < 10%

- => double electron hits < 5% of total hits on that pixel (Poisson statistics)
- Collect 50 laser shots on same position
 - Use the hits to calculate a master point (centre of gravity)
- Move one stage to next position (over 1 mm or so) and take another 50 shots
- Example of 3D run
 - Collecting data from XYZ matrix of 1 * 1 * 1 mm step across 15 * 15 * 15 mm
 - =>3375 master points
 - => 168750 laser shots
 - = => 15.6 hour running

Earlier measurements of Harry's QUAD focus chamber by Wouter Bos

SPARE

In progress/ under discussion

First approach, to be updated, List of parameters Put this on a Nikher server with Going from one chip to another on same carrier

- 3 pixels sacrificed
- Going from one chip to another on neighbouring carrier
 - 4 pixels sacrificed
 - $28.6 \Rightarrow 28.435$

In progress/ under o	List	ist of parameters							
Going from one chi	ip to anothe	er on sa	ime ca	rrier			ndi	atesith	(nn)
 3 pixels sacrifice 	r A						beur	er	Bon
	u .					h.t	io f set	(inc.	
Going from one ch	ip to anothe	er on ne	eighbo	uring		roacus	kher ho	73	
carrier						ppi ar	veryb		
- 1 pixala coorifica	d			Tit	5t "	is on to	e		
4 pixels sacrifice	u			r.	t t	lis cess t			
■ 28.6 => 28.435				P	ut al	l acc			
Mechanical					rea				
Item	Values (um)			Angle (mrad)		Reference			remarks
	X	Y	Z	hor. Plane vert	. plan	X	Y	Z	
position InGrid of chips	± 20	± 20	± 20	1	1	PCB ref marks	PCB ref marks	foot T	
chip to chip distance	60								
last pixel Ch1 1st pixel CH2	165								
chip to chip distance mod 1 to mod 2	115								
last pixel mod1 to 1st pixel mod 2	220								
module to module pitch	28435								
position PCB ref marks	± 20	±20	± 100	1	1	carrier edge	carrier edge	carrier foot	
Top guard electrode	± 50	± 50	500±20	10	1	carrier edge	carrier edge	chip dyke	
chip edge to PBC		100							
chip dimension edge to edge		14130							
Electrical	Value								
Grid potential Vgrid (V)	~-400± 4								
Grid supply resistor (Ω)	100M								each chip
drift field E (V/cm)	-100								
Guard potential (V)	Vgrid + E*Zguar	ď							
Guard supply resistor (Ω)	100M								

Assembly / alignment method

Mount PCB on carrier

- Refer to two carrier edges using jig with reference marks
- AND refer to reference marks on PCB
- Mount chips on carrier
 - 2 chips on one side simultaneously
 - **XY**: refer to grid hole pattern
 - rough alignment using bonding pads (N x 55 μ m)
 - AND refer to reference marks on PCB
 - Z: refer to grid (fixed height of alignment jig)
- Mount guard electrode
 - XY: refer edges to reference marks on PCB (tolerance 100 μm)
 - Provide a 1 mm hole at the PCB reference marks
 - Z: let sides of the guard rest on dykes
 - Guard should fabricated bit hollow
- Module to module
 - XY: refer to PCB reference marks

Sides

2 x 3 pixels lost

dykes

Тор

No pixels lost

Bottom

No pixels lost

