Pixel TPC simulations in the ilcsoft ILD framework

Kees Ligtenberg

Nikhef lepcol gridpix meeting

10 october 2016

Outline

- 1 Overview of simulation framework
- 2 Simulation of pads and pixels
- Muon example event display for pads and pixels
- 4 Resolution in simulation

Overview of the ilcsoft framework for the TPC

- Ilcsoft is the collection of software for the ILC/ILD
- Simulation in geant4 using the DD4HEP detector description tool
- Reconstruction using processors in the modular Marlin framework
 - Marlin processors should also use DD4HEP, but the TPC processors still use the deprecated GEAR
- Ilcsoft installed on lepcol project space at Nikhef
 - ► found at /project/lepcol/ilcsoft/
 - ► setup environment with source /project/lepcol/ilcsoft/v01-17-10/init_ilcsoft.sh

Overview of the ilcsoft framework for the TPC

Simulation of pads

Volumes are organised as tube shaped layers, there are no pad columns

- Detector described by DD4HEP geometry is loaded. Sensitve gas volumes are made
- ② Geant4 processes interactions of particle(s) from gun or event
- 3 Single hit in TPC is deposited if energy above threshold (32eV) in a single pad. Position of pad centre crossing is recorded
- TPC hits are smeared by expected resolution in TPCDigiProcessor. Hits can migrate to other pads
- Smeared hits are used as input for reconstruction

Simulation of pixels

- Simulate pixels as small pads
 - ► Shrink pad size from 6×1 mm to 0.055×0.055 mm
 - ► Allow multiple deposits per pixel crossing before smearing
 - Requires replacement of the the GEAR geometry by the DD4hep geometry

Pad event display and muon track display

7 / 13

Pixel muon track display

single 50 GeV μ^- track

Hits along track

More than $10\ 000$ hits for a $50\ \text{GeV}$ muon track for pixels, compared to $170\ \text{for pads}$

Resolution as function of drift length

Resolution is better closer to the endplate, at larger z

- Simulated resolution is standard deviations of distance to track
- Function is smearing magnitude

Orthogonal distance in z slices

Resolution for different z

Pull diagrams of drift distance in z slices

Pull is gaussian

Conclusion

- The Ilcsoft framework is installed
- Pixel sized pad simulation works for particle gun tracks
- Next steps:
 - ▶ Change pixel TPC hit deposit action. Currently simulation takes hours for $t\bar{t}$ event
 - Look into reconstruction of tracks
 - Replace GEAR by DD4Hep for reconstruction code