Transverse Momentum Distributions of Heavy Hadrons and Polarized Heavy Quarks.

Rebecca von Kuk (DESY), Johannes K. L. Michel (Nikhef/UvA), Zhiquan Sun (MIT) based on 2305.15461 (JHEP 09 (2023) 205)

Nikhef Theory Seminar

European Research Council Established by the European Commission

Outline.

1. Motivation and introduction

- short introduction to transverse momentum dependent distributions (TMDs)
- why are heavy quarks interesting?
- 2. Heavy TMD fragmentation functions (FFs)
 - discuss heavy TMD FFs in two regimes: $\Lambda_{
 m QCD} \sim k_T \ll m$ and $\Lambda_{
 m QCD} \ll k_T \sim m$
- 3. Heavy TMD parton distribution functions (PDFs)
- 4. Towards phenomenology
 - $\bullet \ e^+e^- \to HHX$
 - Semi-inclusive deep inelastic scattering (SIDIS)

5. Outlook

Introductions to Transverse Momentum Dependent Distributions.

Collinear parton distribution functions (PDFs)

- collinear factorization [Collins, Soper, Sterman '89]: separation of physics at different scales, e.g. $m,k_T\ll Q$
- calculate a hard scattering process, but in hadron collisions the specific initial state is not known

Use PDFs:

- probability density for finding particle with certain longitudinal momentum fraction x at scale Q
- non-perturbative: PDFs can not be calculated using perturbative QCD

Introductions to Transverse Momentum Dependent Distributions.

Collinear fragmentation functions (FFs)

- what about the final state?
- in QCD: can't observe free partons \rightarrow parton fragments into a final state hadron
- Use **FFs**: describe probability of a final state hadron to originate from a given quark or gluon

Introductions to Transverse Momentum Dependent Distributions.

Collinear factorization theorem

- cross section factorizes into PDFs, hard scattering process and FFs
- **But**: so far only at a 1D snapshot of longitudinal momentum distributions!

TMD factorization theorem

- allows for extraction of 3D structure of the hadronization cascade
- TMDs are universal across processes [Collins, Metz '04]
- natural power-counting with $k_T \ll Q$

TMD factorization

Why are heavy quarks interesting?

- bottom and charm quarks have $m_b, m_c \gg \Lambda_{
 m QCD}$
 - provides perturbative scale on otherwise non-perturbative dynamics of hadronization
- serve as static color source coupling to light degrees of freedom
- model independent prediction e.g. to improve heavy flavor modeling in MC
- Ideal to study hadronization process

 $\begin{array}{c} \mathbf{q} \\ \mathbf{q} \\ \mathbf{h} \\ \mathbf{$

1.27 GeV/c

charm

hottom

 $Q \gtrsim 10 \, \text{GeV}$

Heavy TMD FFs.

TMD quark-quark correlator describing fragmentation

$$egin{aligned} \Delta_{h/q}(z_H,b_{\perp}) &= rac{1}{2z_H N_c} \int &rac{\mathrm{d} b^+}{4\pi} \, e^{\mathrm{i} b^+ (P_h^-/z_H)/2} \ & imes \mathrm{Tr} \sum\limits_X ig\langle 0 ig| W^\dagger(b) \, \psi_q(b) ig| hX ig
angle \langle hX ig| ar{\psi}_q \, W ig| 0 ig
angle \,, \end{aligned}$$

- k_{\perp} : transverse momentum of the (heavy) quark
- $b = (0, b^+, b_\perp)$: Fourier conjugate of k
- z_H : fraction of quarks lightcone momentum retained by hadron
- P_h^- : large momentum component of the (heavy) hadron

$$p_{\perp}^2 \equiv p_{\perp} \cdot p_{\perp} < 0$$
, and $p_T = \sqrt{-p_{\perp}^2}$, $W(x) = ar{P} \Big[\exp \Big(-\mathrm{i}g \int_0^\infty \mathrm{d}ar{s} \, ar{n} \cdot A(x + ar{n}s) \Big) \Big]$

magic

Basics of TMD FFs.

TMD quark-quark correlator describing fragmentation

$$egin{aligned} \Delta_{h/q}(z_H,b_\perp) &= rac{1}{2z_H N_c} \int &rac{\mathrm{d} b^+}{4\pi} \, e^{\mathrm{i} b^+ (P_H^-/z_H)/2} \ & imes \mathrm{Tr} \sum\limits_X ig\langle 0 ig| W^\dagger(b) \, \psi_q(b) ig| hX ig
angle \langle hX ig| ar\psi_q \, W ig| 0 ig
angle \,, \end{aligned}$$

sum over all possible hadron helicities

$$\sum_X |hX
angle\langle hX|\equiv \sum_X \sum_{h_H} |h,h_H;X
angle\langle h,h_H;X|$$

• Here: only allow unpolarized hadrons

Heavy TMD FFs.

Leading Quark TMDFFs Hadron Spin Quark Spin . **Quark Polarization Un-Polarized** Longitudinally Polarized **Transversely Polarized** (U) (L) (T) (or Spin 0) Hadrons Unpolarized H^{\perp}_{1} Unpolarized Collins ²olarized Hadrons $G_1 =$ L т (-)= $H^{\perp}_{1T} =$

$$egin{aligned} D_{1\,h/q}(z_H,b_T) \ &= ext{tr}\Big[rac{
eta}{2}\Delta_{h/q}(z_H,b_ot)\Big] \end{aligned}$$

i

$$egin{aligned} H^{\perp(1)}_{1\,h/q}(z_H,b_T) \ &= ext{tr} \Big[rac{
eta}{2} rac{
eta_{\perp}}{M_H b_T^2} \, \Delta_{h/q}(z_H,b_{\perp}) \Big] \end{aligned}$$

[Figure taken from TMD Handbook '23]

bHQET

[Isgur, Wise '89 & '90] [Eichten, Hill '90] [Grinstein '90] [Georgi '90][Korner, Thompson '91], [Mannel, Roberts Ryzak '92], [Fleming, Hoang, Mantry, Stewart '08]

- Use bHQET to describe dynamics at non-perturbative scale
- HQET Lagrangian: $\mathcal{L} = \overline{h}_v (\mathrm{i} v \cdot D) h_v + \mathcal{L}_{\mathrm{light}} + \mathcal{O} \left(\frac{1}{m} \right)$ with $v^\mu = \frac{P_H^\mu}{M_H}$
- heavy quark spin symmetry: $[\mathcal{L}_{\mathsf{HQET}}, S_{Q}] = 0$
- 1. step: tree-level matching:
- QCD field: $\psi_{oldsymbol{Q}}(x) = e^{-\mathrm{i} m v \cdot x} h_v(x)$

• external state:
$$|H, h_H; X\rangle = \sqrt{m} |H_v, h_H; X\rangle$$

bHQET

• HQET Lagrangian:
$$\mathcal{L} = ar{h}_v (\mathrm{i} v \cdot D) h_v + \mathcal{L}_{ ext{light}} + \mathcal{O} \Big(rac{1}{m} \Big)$$
 with $v^\mu = rac{P_H^\mu}{M_H}$

- 2. step: decouple light degrees of freedom
- decouple spin degrees of freedom from light dynamics $h_v(x) = Y_v(x) h_v^{(0)}(x)$ [Korchemsky and Radyushkin '92, Bauer, Pirjol and Stewart '02]
- $Y_v(x)$ takes the place of $h_v(x)$ in all external operators

$$egin{aligned} h_v(x) \ket{s_Q,h_Q}; egin{aligned} s_\ell,h_\ell,f_\ell \end{bmatrix}; X
angle = egin{aligned} u(v,h_Q) \, Y_v(x) \ \hline s_\ell,h_\ell,f_\ell \end{bmatrix}; X
angle \end{aligned}$$

• where
$$\underbrace{u(v, h_Q)}_{\text{HQET spinor}} = \underbrace{u(mv, h_Q)}_{\text{Dirac spinor}} / \sqrt{m}$$

$$Y_v(x) = P \Big[\exp \Bigl(\mathrm{i} g \int_0^\infty \mathrm{d} s \, v \cdot A(x+vs) \Bigr) \Big]$$

 v^{μ}

Heavy TMD FFs.

Two different regimes

Regime 1 $\Lambda_{ m QCD} \sim k_T \ll m$

• recall TMD quark-quark correlator:

Regime 1 $\Lambda_{ m QCD} \sim k_T \ll m$

• evaluate TMD FFs:

$$D_{1\,H/Q}(z_H, b_T, \mu, \zeta) = \underbrace{\delta(1 - z_H) C_m(m, \mu, \zeta)}_{p_1H(m, \mu, \zeta)} \underbrace{\chi_{1,H}\left(b_T, \mu, \frac{\sqrt{\zeta}}{m}\right)}_{\chi_{1,H}(p_T, \mu, \zeta)} \underbrace{\delta(1 - z_H) C_m(m, \mu, \zeta)}_{\chi_{1,H}(p_T, \mu, \frac{\sqrt{\zeta}}{m})} \underbrace{\chi_{1,H}^{\perp}\left(b_T, \mu, \frac{\sqrt{\zeta}}{m}\right)}_{\chi_{1,H}(p_T, \mu, \zeta)} \underbrace{\delta(1 - z_H) C_m(m, \mu, \zeta)}_{\chi_{1,H}(p_T, \mu, \zeta)} \underbrace{\chi_{1,H}^{\perp}\left(b_T, \mu, \frac{\sqrt{\zeta}}{m}\right)}_{\chi_{1,H}(p_T, \mu, \zeta)} \underbrace{\delta(1 - z_H) C_m(m, \mu, \zeta)}_{\chi_{1,H}(p_T, \mu, \zeta)} \underbrace{\chi_{1,H}^{\perp}\left(b_T, \mu, \frac{\sqrt{\zeta}}{m}\right)}_{\chi_{1,H}(p_T, \mu, \zeta)} \underbrace{\chi_{1,H}^{\perp}\left(b_T, \mu, \frac{\chi$$

• new scalar bHQET TMD fragmentation factors

$$\chi_{1,H}(b_T) = rac{1}{2} \operatorname{tr} F_H(b_\perp) \ , \qquad \chi_{1,H}^\perp(b_T) = rac{1}{2} \operatorname{tr} \Big[rac{
ot\!\!/}{b_T}
ot\!\!/ F_H(b_\perp) \Big]$$

• $\chi_{1,H}$ conditional probability to produce H given k_T

• $\chi_{1,H}^{\perp}$ conditional density of quark spin w.r.t magnetization axis given by Q and k_T

Regime 1: $\Lambda_{ m QCD} \sim k_T \ll m$

• 2. step: decouple spin d.o.f. from light dynamics

$$h_v(x) = Y_v(x) \, h_v^{(0)}(x)$$

Clebsch-Gordan-Coefficients

 $egin{aligned} F_H(b_\perp) &= rac{1}{2} \sum_{h_H} \sum_{h_Q,h'_Q} \sum_{h_\ell,h'_\ell} u(v,h_Q) \, ar{u}(v,h'_Q) \, ar{\langle s_Q,h_Q;s_\ell,h_\ell|s_H,h_H
angle \langle s_H,h_H|s_Q,h'_Q;s_\ell,h'_\ell
angle} \ & imes rac{1}{N_c} \operatorname{Tr} \sum_X igl\langle 0| W^\dagger(b_\perp) \, Y_v(b_\perp)|s_\ell,h_\ell,f_\ell;X igl\langle s_\ell,h'_\ell,f_\ell;X|Y_v^\dagger(0) \, W(0)|0
angle \ & op_{\ell,h_\ell h'_\ell}(b_\perp) \end{aligned}$

• $\rho_{\ell,h_{\ell}h'_{\ell}}(b_{\perp})$: light spin density matrix, encodes all non-perturbative physics $\begin{pmatrix} 0 & q & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Results for the unpolarized TMD FF

• performing trace sets $h_Q = h_Q'$ and $h_\ell = h_\ell'$

$$D_{1\,H/Q}(z_H, b_T, \mu, \zeta) \propto \chi_{1,H}(b_T) = rac{1}{2} \sum_{h_H} \sum_{h_Q} \sum_{h_\ell} |\underbrace{\langle s_Q, h_Q; s_\ell, h_\ell | s_H, h_H
angle}_{ ext{Clebsch-Gordan-Coefficients}}|^2 \,
ho_{\ell,h_\ell h_\ell}(b_\perp)$$

example:

$$\begin{array}{c} D\left(s_{\ell}=1/2\,,\,s_{H}=0\right) \\ \chi_{1,D}(b_{T})=\frac{1}{4}\big[\rho_{\ell,++}(b_{\perp})+\rho_{\ell,--}(b_{\perp})\big] \end{array} \text{Vs.} \begin{array}{c} D^{*} \text{ meson}\left(s_{\ell}=1/2\,,\,s_{H}=1\right) \\ \chi_{1,D^{*}}(b_{T})=\frac{3}{4}\big[\rho_{\ell,++}(b_{\perp})+\rho_{\ell,--}(b_{\perp})\big] \end{array}$$

three times as likely to produce D* than D!

for the first time: show that relations hold point by point in k_T

[proven for inclusive fragmentation Falk and Peskin '94, Manohar and Wise '00]

Results for the unpolarized TMD FF

complete sum of states

$$\chi_1(b_T)\equiv\sum_H\chi_{1,H}(b_T)=rac{1}{N_c}\operatorname{Tr}ig\langle 0ig|W^\dagger(b_\perp)\,Y_v(b_\perp)\,Y_v^\dagger(0)\,W(0)ig|0ig
angle$$

- vacuum element of Wilson lines!
- simplest TMD observable possible!

NLO result from ongoing work by RvK, J.K.L. Michel and Z. Sun

$$\chi_1(b_T,\mu,
ho) = 1 + rac{lpha_s(\mu)}{4\pi} \, C_F(-L_b)ig(4\ln
ho-2ig) + \mathcal{O}(lpha_s^2) + \mathcal{O}(\lambda_{ ext{QCD}}^2b_T^2)$$

Results for the Collins TMD FF

- encodes correlation between $S_{q\perp}^{ ext{initial}}$ and k_\perp
- naive expectation from HQ symmetry: Collins TMD FF should be suppressed by 1/m

Light quarks:

• correlation directly from non-perturbative dynamics of $\mathcal{L}_{\rm QCD}$

Results for the Collins TMD FF

$$H^{(1),\perp}_{1,H/Q}(z_H,b_T) \propto \chi^{\perp}_{1,H}(b_T) = rac{1}{2} \operatorname{tr} \Big[rac{b_\perp}{b_T}
ot\!\!\!\! \not z \, F_H(b_\perp) \Big]$$

- encodes correlation between $S_{q\perp}^{ ext{initial}}$ and k_\perp
- naive expectation from HQ symmetry: Collins TMD FF should be suppressed by 1/m

Light quarks:

- correlation directly from non-perturbative dynamics of $\mathcal{L}_{\rm QCD}$ Heavy quarks:
 - measuring D vs. D^* induces correlation between $S_{Q\perp}$ and $S_{\ell\perp}$

Results for the Collins TMD FF

$$H^{(1),\perp}_{1,H/Q}(z_H,b_T) \propto \chi^{\perp}_{1,H}(b_T) = rac{1}{2} \operatorname{tr} \Big[rac{b_\perp}{b_T}
ot \neq F_H(b_\perp) \Big]$$

- encodes correlation between $S_{q\perp}^{ ext{initial}}$ and k_\perp
- naive expectation from HQ symmetry: Collins TMD FF should be suppressed by 1/m

Light quarks:

- correlation directly from non-perturbative dynamics of $\mathcal{L}_{\mathbf{QCD}}$ Heavy quarks:
 - measuring D vs. D^* induces a correlation between $S_{Q\perp}$ and $S_{\ell\perp}$

Results for the Collins TMD FF

$$H^{(1),\perp}_{1,H/Q}(z_H,b_T) \propto \chi^{\perp}_{1,H}(b_T) = rac{1}{2} \operatorname{tr} \Bigl[rac{b_\perp}{b_T}
ot \!\!\!\!/ \, F_H(b_\perp) \Bigr]$$

- encodes correlation between $S_{q\perp}^{ ext{initial}}$ and k_\perp
- naive expectation from HQ symmetry: Collins TMD FF should be suppressed by 1/m

Collins effect is not suppressed by 1/m!

Results for the Collins TMD FF

$$H^{(1),\perp}_{1,H/Q}(z_H,b_T) \propto \chi^{\perp}_{1,H}(b_T) = rac{1}{2} \operatorname{tr} \Big[rac{b_\perp}{b_T}
ot \neq F_H(b_\perp) \Big]$$

• example
$$s_\ell = 1/2\,,\ s_H = 0$$

$$\chi^{\perp}_{1,H}(b_T) = rac{1}{4} ig[
ho_{\ell,-+}(b_{\perp}) -
ho_{\ell,+-}(b_{\perp}) ig]$$

• sum over all hadrons within same spin multiplet M_ℓ (identical light spin and falvor state ℓ)

$$\sum_{H \in M_{\ell}} \chi_{1,H}^{\perp}(b_T) = 0 \quad \rightarrow \qquad H_{1,D/c}^{\perp} + \boxed{H_{1,D^*/c}^{\perp}} = 0$$

Heavy quark limit lets us sum rule point by point in q_T !

[Previously shown in bare case. Requires sum over all hadrons and integration of z_H and k_T . Schäfer and Teryaev '00, Meissner, Metz and Pitonyak '10]

 $\mathcal{L}_{\mathrm{light}}$

 $S_{O1}^{\text{initial}} = S_{O1}^{\text{fina}}$

 $H_{1H/Q}^{\perp} \otimes$

D

Heavy TMD FFs.

Two different regimes

Regime 2.

Unpolarized for $\Lambda_{ m QCD} \ll k_T \sim m$ (ullet

• match onto bHQET at $\mu \sim k_T \sim m$ [Nadolsky, Kidonakis, Olness and Yuan '03]

$$D_{1\,H/Q}(z_H,b_T,\mu,\zeta) = egin{bmatrix} d_{1\,Q/Q}(z_H,b_T,\mu,\zeta) & \chi_H \ + \mathcal{O}\Big(rac{\Lambda_{
m QCD}}{m}\Big) + \mathcal{O}(\Lambda_{
m QCD}b_T) \end{pmatrix}$$

new perturbative matching coefficient:

$$\overline{d_{1\,Q/Q}(z_H,b_T,\mu,\zeta)} = \mathrm{tr}\Big[rac{
ot\!\!/}{2}\,\Delta_{Q/Q}(z_H,b_\perp)\Big] = \delta(1-z_H) + \mathcal{O}(lpha_s)$$

• χ_H total probability of Q to fragment into H

symmetry relations hold for all values of k_T and to all orders in α_s !

$$D \quad D_{1\,H/Q} = \frac{1}{3} D_{1\,H^*/Q} \quad D^*$$

Heavy TMD FFs.

Unpolarized TMD FF: work in progress (

• calculate $d_{1\,Q/Q}(z_H,b_T,\mu,\zeta)$ at NLO

• also consider $d_{1\,g/Q}(z_H,b_T,\mu,\zeta)$ and $d_{1\,Q/g}(z_H,b_T,\mu,\zeta)$

• check against:

- 🕨 heavy quark limit 🗸
- light quark limit
- \blacktriangleright joint k_T & threshold resum. for z
 ightarrow 1 with full mass dependence \checkmark

Collins for $\Lambda_{
m QCD} \ll k_T \sim m$

$$b_T M_H \, H_{1 \, H/Q}^{\perp(1)}(z_H, b_T) = \delta(1 - z_H) \, b_T \, \chi_{H,G} + \mathcal{O}(lpha_s) + \mathcal{O}(\Lambda_{
m QCD}^2)$$

• $\chi_{H,G}$ correlation between gluon field polarization and transverse polarization

$$\chi_{H,G} \equiv rac{1}{2N_c} \operatorname{Tr} \operatorname{tr} \sum_X \left\{ \langle 0 | W^\dagger \, \sigma_{eta lpha} z^eta \, ig| \mathrm{i} D^lpha_\perp + g \mathcal{G}^lpha_\perp ig] h_v ig| H_v X
angle \langle H_v X ig| ar{h}_v W ig| 0
angle + ext{h.c.}
ight\}.$$

► can easily show $\sum_{H \in M_{\ell}} \chi_{H,G} = 0$ → new symmetry relation still holds!

Heavy TMD FFs.

Two different regimes

Heavy TMD FFs.

numerical model

0.7

- at LL: TMD FFs completely specified by $\chi_{1,H}$, $\chi_{1,H}^{\perp}$ and TMD evolution
- assume simple Gaussian models

$$\chi_{1,H}(b_{T},\mu_{0},\rho_{0}) = \chi_{H} \exp\left(-\kappa_{H}^{2}b_{T}^{2}\right)$$

$$\chi_{1,H}^{\perp}(b_{T},\mu_{0},\rho_{0}), = \chi_{H} \lambda_{H\perp}b_{T} \exp\left(-\kappa_{H\perp}^{2}b_{T}^{2}\right)$$

$$\downarrow - \downarrow$$

$$Q \rightarrow HX$$

$$\mu = \sqrt{\xi} = 10 \text{ GeV}$$

0.0

0.0

 $\left(\begin{array}{ccc} rac{2\pi k_T}{\lambda_H} \int dz_H \, D_{1\,H/Q}(z_H,k_T) & \ 1 & 0 & 0 & 0 \end{array}
ight)$

Heavy TMD PDFs.

setup

- consider production of a heavy quark Q with from light partons within a (polarized) nucleon N
- heavy quarks is pair produced in initial state gluon splitting at $\mu \sim m$
- TMD PDFs can be calculated by matching them onto leading collinear PDFs
- TMD PDF decomposition: [Bacchetta, Diehl, Goeke, Metz, Mulders and Schlegel '07, Ebert, Gao and Stewart '22] $\Phi_{Q/N}(x,k_{\perp})=$

$$\Big\{f_{1\,Q/N}+g_{1L\,Q/N}S_L\gamma_5+h_{1L\,Q/N}^{\perp}S_L\gamma_5rac{k_{\perp}}{M_N}+\mathrm{i}h_{1\,Q/N}^{\perp}rac{k_{\perp}}{M_N}+(\mathrm{terms}\propto S_{\perp})\Big\}rac{\mu}{4}$$

- S_L : longitudinal nucleon polarization, M_N : the nucleon mass
- all terms $\propto S_{\perp}$ vanish at order $lpha_s$

Heavy TMD PDFs.

	Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
U	$f_1 = \bigcirc$		$h_1^{\perp} = \textcircled{\uparrow} - \textcircled{\downarrow}$
L		$g_1 = + - + +$	$h_{1L}^{\perp} = {} - {} +$

setup

• TMD PDF decomposition:

$$\Phi_{Q/N}(x,k_{\perp}) = \Big\{ f_{1\,Q/N} + g_{1L\,Q/N} S_L \gamma_5 + h_{1L\,Q/N}^{\perp} S_L \gamma_5 \frac{k_{\perp}}{M_N} + \mathrm{i} h_{1\,Q/N}^{\perp} \frac{k_{\perp}}{M_N}) \Big\} \frac{*}{4}$$

collinear PDF decomposition [Collins '11]

$$\Phi^{\mu
u}_{g/N}(x) = -rac{g_{\perp}^{\mu
u}}{2}\,f_{g/N}(x) + rac{{
m i}\epsilon_{\perp}^{\mu
u}}{2}\,g_{g/N}(x)\, igsir S_L$$

• unpolarized f_1 and Boer-Mulders h_1^{\perp} match onto unpolarized PDF f_g \bullet , $(\dagger) - (\bullet)$

• helicity $g_{1,L}$ and Worm-gear $L h_{1,L}^{\perp}$ match onto helicity PDF $g_g \bigoplus - \bigoplus - \bigoplus - () \longrightarrow -$

results

• unpolarized quark from unpolarized gluon:

$$C^{(1)}_{Q/g}(z,k_T,m) = T_F\,\Theta(z)\Theta(1-z)\,rac{2}{\pi}\,rac{k_T^2(1-2z+2z^2)+m^2}{(k_T^2+m^2)^2}$$

[Nadolsky, Kidonakis, Olness, Yuan '02], [Pietrulewicz, Samitz, Spiering, Tackmann '17]

• NEW: longitudinally polarized quark from longitudinally polarized gluon:

$$igg| C^{(1)}_{Q_{\parallel}/g_{\parallel}}(z,k_T,m) = T_F\,\Theta(z)\Theta(1-z)\,rac{2}{\pi}\,rac{k_T^2(2z-1)+m^2}{(k_T^2+m^2)^2}$$

• NEW: transversely polarized quark from longitudinally polarized gluon:

$$C^{(1)}_{Q_{\perp}/g_{\parallel}}(z,k_T,m) = T_F\,\Theta(z)\Theta(1-z)\,rac{4}{\pi}rac{mk_T(z-1)}{(k_T^2+m^2)^2}$$

Towards Phenomenology.

Towards Phenomenology: $e^+e^- \rightarrow HHX$.

Charm continuum production

- cross section depends on transverse momentum of the hadron $P_{a,T}$ and partonic transverse momentum $q_T = P_{a,T}/z_a$
- Collins effect strength: $R_{\cos(2\phi_0)}(Q^2,q_T) = H_1^{\perp(1)}\otimes H_1^{\perp(1)}/D_1\otimes D_1$

absolute sign of the Collins functions lost!

Towards Phenomenology: SIDIS at future EIC.

Collins effect

get access to the sign of the Collins via spin asymmetry

 $A_{UL}^{\sin(2\phi_H)}(Q^2,x,q_T)=h_{1L}^\perp\otimes H_1^\perp/f_1\otimes D_1$

resolving the sign should be possible within expected statistics at EIC!

TMD FFs within jets

- consider heavy-quark TMD fragmentation within jets
- straightforward extension: our results are independent of the factorization theorem!
- polarization of inital state quark washed out

Polarized Hadrons

- also consider polarized hadrons \rightarrow study all eight TMD FFs for heavy quarks
- relevant for LHC(b): polarized hadrons can be reconstructed from angular distribution of decay products → access to same ρ_ℓ

Outlook and Summary.

Summary

- heavy TMD FFs:
 - $\Lambda_{
 m QCD} \sim k_T \ll m$: new bHQET matrix elements $\chi_{1,H}, \chi_{1,H}^{\perp}$
 - $\Lambda_{\text{QCD}} \ll m \sim k_T$: new inclusive bHQET matirx elements χ_1, χ_1^{\perp} and new perturbative matching coefficient $d_{1Q/Q}$
- heavy TMD PDFs
 - calculated matching coefficients for worm-gear-L and helicity TMD PDFs for the first time

7)*

- towards phenomenology
 - measurement of Collins effect within reach for existing B factories
 - future EIC: provides possibility to measure the absolute sign of the Collins TMD FF
- Outlook: numerous follow up projects → Stay tuned!

Thank you!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 101002090 COLORFREE).

European Research Council

Established by the European Commission

Collins for $\Lambda_{ m QCD} \ll k_T \sim m$

- two step matching to integrate out $\mu \sim k_T, m$
- use known matching for light quarks to integrate out k_T [Mulders and Tangerman '96, Boer and Mulders '98, Yuan and Zhou '09]

$$b_T M_h \, H^{\perp(1)}_{1\,h/q}(z_h,b_T) = b_T \left[\hat{H}_{h/q}(z_h)
ight] + \mathcal{O}(lpha_s) + \mathcal{O}(\Lambda^2_{
m QCD} b_T^2) \, ,$$

• $\hat{H}_{h/q}(z_h)$ is twist-3 collinear fragmentation matrix element at the scale $\mu \sim \Lambda_{
m QCD}$:

$$egin{aligned} \hat{H}_{h/q}(z_h) &\equiv rac{z_h^2}{2N_c} \int &rac{\mathrm{d}x^+}{4\pi} \, e^{\mathrm{i}x^+(P_h^-/z_h)/2} \, \mathrm{Tr} \, \mathrm{tr} \, \sum_X^{\prime} iggl\{ &\langle 0 | W^\dagger(x) \ & imes \, \sigma_{lpha-} iggl[\mathrm{i} D^lpha_\perp(x) + g \mathcal{G}^lpha_\perp(x) iggr] \psi_q(x) | hX
angle \langle hX | ar{\psi}_q(0) W(0) | 0
angle + ext{h.c.} iggr\} \end{aligned}$$

Regime 2.

Collins for $\Lambda_{ m QCD} \ll k_T \sim m$

• match $\hat{H}_{h/q}(z_h)$ onto bHQET to integrate out m

$$\hat{H}_{h/q}(z_h) = \delta(1-z_H) \left[\chi_{H,G} + \mathcal{O}(lpha_s) + \mathcal{O}\Big(rac{1}{m}\Big) \, ,
ight.$$

- $\chi_{H,G}$ correlation between gluon field polarization and transverse polarization of light components in hadron
- matching coefficient from bHQET:

$$\chi_{H,G} \equiv rac{1}{2N_c} \operatorname{Tr} \operatorname{tr} \sum_X^{\prime} \Bigl\{ ig\langle 0 ig| W^\dagger \, \sigma_{etalpha} z^eta \, ig[\mathrm{i} D^lpha_ot + g \mathcal{G}^lpha_ot] h_v ig| H_v X ig
angle ig\langle H_v X ig| ar{h}_v W ig| 0 ig
angle + ext{h.c.} \Bigr\}$$

final result for the tree-level matching of the heavy-quark Collins TMD FF onto bHQET

$$b_T M_H H_{1 H/Q}^{\perp(1)}(z_H, b_T) = \delta(1 - z_H) b_T \chi_{H,G} + \mathcal{O}(\alpha_s) + \mathcal{O}(\Lambda_{\rm QCD}^2)$$

► can easily show $\sum_{H \in M_{\ell}} \chi_{H,G} = 0$ → new symmetry relation still holds!

Heavy TMD FFs.

numerical model

- at LL: TMD FFs completely specified by $\chi_{1,H}$, $\chi_{1,H}^{\perp}$ and TMD evolution
- assume simple Gaussian models

$$egin{aligned} \chi_{1,H}(b_T,\mu_0,
ho_0) &= \chi_H \expigg(-\kappa_H^2 b_T^2igg) \ \chi_{1,H}^ot(b_T,\mu_0,
ho_0)\,, &= \chi_H\,\lambda_{Hot}b_T\,\expigg(-\kappa_{Hot}^2 b_T^2igg) \end{aligned}$$

matching calculation

• matching coefficient $C_{Q/g}$ is be defined by

$$\Phi^{etaeta'}_{Q/N}(x,k_{\perp}) = \int rac{\mathrm{d}p^-}{p^-} \left[C^{etaeta'}_{Q/g,\mu
u}(xP_N^-,p^-,k_{\perp},m)
ight] \Phi^{\mu
u}_{g/N}\Big(rac{p^-}{P_N^-}\Big)$$

$$C^{etaeta'}_{Q/g,\mu
u}(zp^-,p^-,k_{ota},m) \ = \ egin{array}{c} zp+k_{ota} & & & \ & \ & & \$$

• where $z = x P_N^- / p^-$ is the fraction of p^- injected into the hard scattering process

• insert $\Phi_{g/N}$ and trace resulting Dirac spinors $(...)^{etaeta'}$ against relevant Dirac structures February 22 2024

Heavy TMD PDFs.

numerical model

• unpolarized and helicity are linear in small k_T region, worm-gear L quadratic (after including Jacobian)

- unpolarized rises much more rapidly for small $m{x}$
 - \blacktriangleright expected from smaller gluon polarized fraction at small x

- need for resummation of subleading-power threshold logs of 1-x

Towards Phenomenology: SIDIS at future EIC.

cross section

- compare cross sections *D* and *B* mesons
- broader peak for B because of different size of phase space
- very small dependence on parameter κ_H

February 22 2024

Towards Phenomenology: SIDIS at future EIC.

SIDIS kinematics

- electron-nucleon collisions $e^-(\ell) + N(P) \rightarrow e^-(\ell') + H(P_H) + X$
- scattering mediated by an off-shell photon with $q=\ell-\ell'$ and $Q^2\equiv-q^2>0$
- SIDIS cross section depends on: $x = Q^2/(2P \cdot q), y = (P \cdot q)/(P \cdot \ell), z_H = (P \cdot P_H)/(P \cdot q)$
- estimate sample at EIC:

$\sigma(eN o eHX)~{ m [pb]}$	c, x > 0.01	c, x > 0.1	b, x > 0.01	b, x > 0.1
$q_T < 2{ m GeV}, Q > 4{ m GeV}$	84	3.47	18	0.65
$q_T < 4{ m GeV}, Q > 10{ m GeV}$	16	1.45	4.9	0.42

acceptance cuts: $0.01 < y < 0.95\,, \quad W^2 = \Big(rac{1}{x} - 1\Big)Q^2 > 100\,{
m GeV}^2$