Sphalerons in Air Showers

Charles Timmermans

Radboud University Nijmegen

Air Shower - Observables

Altitude of interaction: Lateral distribution of particles at the surface Heavy quarks, ρ^0 production: Muon/electron ratio at the surface

12/10/16 What would the effect of sphaleron production be?

Sphaleron Signature

FIG. 1. Reconstruction of event 15346477.

Auger Contribution to the field

Complete X_{max} distributions as a function of energy, to be compared to your favorite model

5

 TABLE I. Event selection criteria, number of events after each

 cut and selection efficiency with respect to the previous cut.

Cut	Events	ε
Pre-selection:		
Air-shower candidates	2573713	
Hardware status	1920584	74
Aerosols	1569645	81
Hybrid geometry	564324	35
Profile reconstruction	539960	95
Clouds	432312	80
$E > 10^{17.8} \text{ eV}$	111194	25
Quality and fiducial selection:		
$\widetilde{P}(hybrid)$	105749	95
X _{max} observed	73361	69
Quality cuts	58305	79
Fiducial field of view	21125	36
Profile cuts	19947	94

Phys. Rev. D90 (2014)

12/10/16

Shower data compared to LHC-tuned

Simulations tuned to LHC measurements

Auger X_{max} summary plots

Sphaleron sensitivity for Auger

Not an Auger result!!

Assuming a sensitivity following

$$f_{\sigma_T} \le \sqrt{\frac{4\epsilon_{\mathrm{B}}}{\epsilon_{\mathrm{S}}^2 A^2 N}},$$

An efficiency for background acceptance of 20% An efficiency for signal acceptance of 50%

Assumption protons only, and data in agreement with protons

Brooijmans, ArXiv 1602.00647 Even

Event numbers per energy bin as shown before

Disentangling new physics from composition of primary: More observables

 $10^{18.8}$ < Energy < $10^{19.2}$

Energy scale can be correct (EM component), but hadronic component much larger in data

PRL August 2016

Muon production depth

Phys. Rev. D90 (2014), D92 (2015)

Number of muons in inclined showers

 $R_{\mu} = 1$ means 2.148 10⁷ muons with energy above 0.3 GeV at the Auger site.

R_u is calculated from measured 'muon' distribution

Too many muons are observed in the air shower, But the uncertainty is large Phys. Rev. D91 (2015)

AugerPrime improvements

Cross section: Altitude of first interaction

Multiplicity: Speed of shower development

High energy photons: EM/hadronic energy

Production of heavy quarks (but also ρ⁰): Muon production height

Altitude of interaction: Lateral distribution of particles at the surface Heavy quarks, ρ^0 production: Muon/electron ratio at the surface

Conclusions

- At 2 EeV the Auger Xmax measurement is compatible with protons
- This gives a limit on sphaleron production of about 1 mb
- At higher energies, the average shower depth decreases wrt proton primaries, indicating larger cross sections . This is usually attributed to higher mass primaries.
- The surface detector information is incompatible with the models, for all "standard" primary particles.
 - Muon depth: Too high in the atmosphere
 - Muon number: Too many produced
 - Hadronic energy ~ 30% too much
- The upgrade of Auger will decrease the uncertainty on the SD information