## Path integral

$$
\begin{aligned}
& \left\langle A_{\mu_{1}}^{a_{1}} \ldots A_{\mu_{n}}^{a_{n}}\right\rangle=\int \mathcal{D} A_{\mu}^{a}\left(A_{\mu_{1}}^{a_{1}} \ldots A_{\mu_{n}}^{a_{n}}\right) e^{\frac{i}{\hbar} S_{\text {classical }}} \\
& S_{\text {classical }}=-\frac{1}{4} \int d^{4} x F_{\mu \nu}^{a} F^{\mu \nu, a} \quad F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+i g \epsilon^{a b c} A_{\mu}^{b} A_{\nu}^{c}
\end{aligned}
$$

rescale to clarify coupling dependence

$$
\hat{A}_{\mu}=g A_{\mu} \quad \hat{F}_{\mu \nu}^{a}=g F_{\mu \nu}^{a} \quad \text { (drop the hats in the following) }
$$

Usually the exponential gives rise to a suppression factor

$$
e^{-\frac{1}{g^{2}} S_{E u c l .}}
$$

(in Euclidean space, with $\hbar=1$ )

## Gauge transformations

$$
\begin{aligned}
D_{\mu} & \equiv \partial_{\mu}+\mathcal{A}_{\mu} \rightarrow U^{-1} D_{\mu} U \\
\mathcal{A}_{\mu} & \rightarrow U^{-1} \mathcal{A}_{\mu} U+U^{-1} \partial_{\mu} U
\end{aligned}
$$

## Abelian

$$
\begin{gathered}
\mathcal{A}_{\mu}=i e q A_{\mu} \\
U=e^{i e q \Lambda}
\end{gathered}
$$

$$
A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \Lambda
$$

Non-abelian
$\mathcal{A}_{\mu}=i g \sum_{a} A_{\mu}^{a}\left(\frac{1}{2} \sigma^{a}\right)$
Pure gauge
$\mathcal{A}_{\mu}=U^{-1} \partial_{\mu} U$

## Tye and Wong, arXiv 1505.03690

Introducing $Q=\mu / m_{W}$ (so $Q$ has the dimension of a coordinate) we obtain a constant mass $m$ and

$$
\begin{equation*}
\left(-\frac{1}{2 m} \frac{\partial^{2}}{\partial Q^{2}}+V(Q)\right) \Psi(Q)=E \Psi(Q) \tag{1.1}
\end{equation*}
$$

Using the known Higgs vacuum expectation value $v=246 \mathrm{GeV}$, $W$ Boson mass $m_{W}=80 \mathrm{GeV}$ and the Higgs Boson mass $m_{H}=125 \mathrm{GeV}$, we obtain

$$
\begin{align*}
V(Q) & \simeq 4.75 \mathrm{TeV}\left(1.31 \sin ^{2}\left(m_{W} Q\right)+0.60 \sin ^{4}\left(m_{W} Q\right)\right) \\
E_{s p h} & =\max [V(Q)]=V\left(\frac{\pi}{2 m_{W}}\right)=9.11 \mathrm{TeV} \\
m & =17.1 \mathrm{TeV} \tag{1.2}
\end{align*}
$$

where the potential $V(Q)$ was obtained by Manton (see Fig. 1). Determining the value of this mass $m$ is a main result of this paper. Note that a rescaling of $Q$ rescales $m$, though the physics is unchanged.


## Link between Chern Simons number and anomalies



Traces with $\nu_{5}$ lead to current non-conservation
$\left(\mathcal{\gamma}_{5}\right.$ may originate from gauge boson coupling or current)

$$
\partial_{\mu} J_{\text {global }}^{\mu}=N_{F} \partial_{\mu} K_{\mathrm{CS}}^{\mu} \quad K_{\mathrm{CS}}^{\mu}=-\frac{1}{8 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left[A_{\nu} \partial_{\rho} A_{\sigma}+\frac{2}{3} A_{\nu} A_{\rho} A_{\sigma}\right]
$$

$$
\begin{gathered}
Q_{\text {global }}=\int d^{3} x J_{\text {global }}^{0} \\
\frac{d}{d t}\left(Q_{\text {global }}-N_{\mathrm{F}} N_{\mathrm{CS}}\right)=0
\end{gathered}
$$

$N_{F}$ is the number of Weyl multiplets
(taken to be left-handed)
$Q_{\text {global }}$ is equal to 1 for each left-handed Weyl multiplet coupling to the gauge group, 0 for all other matter
't Hooft vertex


## One incoming line for each left-handed Weyl fermion

For example in QCD:
Up quark: One Dirac fermion $\psi_{u}$
Two Weyl components $\psi_{u, L}$ and $\psi_{u, R}$
Equivalent to two left-handed Weyl components $\psi_{u, L}$ and $\psi_{\overline{\bar{u}}, L}$



For three families

$$
u_{L} \bar{u}_{L} d_{L} \bar{d}_{L} s_{L} \bar{s}_{L} c_{L} \bar{c}_{L} b_{L} \bar{b}_{L} t_{L} \bar{t}_{L}
$$

$Q_{\text {global }}=Q_{5} \quad$ ("axial charge")
$\Delta Q_{5}=12$

## Weak interactions

$\binom{\nu_{e}}{e^{-}}\binom{\nu_{\mu}}{\mu^{-}}\binom{\nu_{\tau}}{\tau^{-}}\binom{u_{r}}{d_{r}}\binom{u_{g}}{d_{g}}\binom{u_{b}}{d_{b}}\binom{c_{r}}{s_{r}}\binom{c_{g}}{s_{g}}\binom{c_{b}}{s_{b}}\binom{t_{r}}{b_{r}}\binom{t_{g}}{b_{g}}\binom{t_{b}}{b_{b}}$
$S U(2)$ invariance: take six from row 1 and six from row 2; (use crossing as needed)

For example
$u_{r} u_{g} \rightarrow e^{+} \mu^{+} \tau^{+} \bar{u}_{b} \bar{c}_{r} \bar{c}_{g} \bar{c}_{b} \bar{b}_{r} \bar{b}_{g} \bar{b}_{b}$
$\Delta B=\Delta L=3$
r=red g=green b=blue

$$
\begin{aligned}
& \Delta(B-L)=0 \\
& \Delta(B+L)=6
\end{aligned}
$$

