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We consider baryon and lepton number violating processes induced by instantons in an 
electroweak-type model. We show semi-quantitatively that processes of the type q + q -~ 79 + 3{ 
are very much suppressed even at large energies. The inclusive cross sections for q + q -~ 7q + 3E 
+ n,~W + nhq0, where W stands for W -+ and Z bosons and q0 for Higgs bosons, are much larger at 
high energies. They increase with the energy and reach 1 pb for a parton center of mass energy of 
the order of tens of TeV. The reason for this behaviour is that the leading-order S matrix 
elements for above processes are local and of order n!exp(-2~r/c~w), where n= n,, + n h. We 
argue that before these energies are reached, perturbation theory in the instanton sector breaks 
down. We comment on how this fits onto the sphaleron picture of the anomalous baryon and 
lepton number violation at high energies. 

1. Introduction 

It  is well  known  that  baryon  number  ( B )  and  lepton number  ( L )  are not  str ict ly 
conse rved  in the s t andard  model.  Indeed,  as ' t  Hoof t  [1] observed,  gauge field 
conf igu ra t ions  with nonvanish ing  topologica l  charge can cause explici t  v iola t ion of 
B and  L in the s t andard  e lectroweak theory.  In  the vacuum sector  this p h e n o m e n o n  
is a s soc ia ted  with ins tantons  [2], descr ib ing tunnel ing t ransi t ions  between topologi-  
ca l ly  inequ iva len t  vacua which are  separa ted  by  an energy bar r ie r  of height  - m w/C% 
[1, 3-5] .  In  weak ly  coupled theories the probabi l i t i es  of these t ransi t ions  are expo-  
nen t i a l ly  suppressed;  in par t icular ,  the cor respond ing  suppress ion factor  in the 
s t a n d a r d  e lec t roweak theory is exp ( -2S in s t ) ,  where S i n s t  = 27r/a w is the classical  
euc l idean  ac t ion  of the ins tanton.  Various  authors  [6-9]  have suggested that,  if the 
real  energy of  a system is large enough ( E  >1 rnw/aw) ,  the system can pass over  the 
energy  ba r r i e r  be tween different  vacua ra ther  than pene t ra te  through the barr ier ,  in 
which  case the rate  of the anomalous  nonconserva t ion  of the fermion number  can 
be unsuppressed .  Progress in this d i rect ion was poss ible  through the deve lopment  
[10-14]  of  a s tat ic  saddle -po in t  solut ion in the e lec t roweak theory,  which corre- 
s p o n d s  ju s t  to the bar r ie r  conf igura t ion  between topologica l  inequivalent  vacua  and 
p rov ides  a nont r iv ia l  source for B and L violat ion.  This solution,  d u b b e d  a 
" s p h a l e r o n "  [14], has been examined  for its role in genera t ing  and des t roying  the 
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baryon asymmetry of the universe at high temperatures in a cosmological context 
[15-21]. Another possibility mentioned in refs. [14,22] is the B and L violation in 
high energy collisions. 

The key question is whether anomalous B and L violating processes in the 
standard model are indeed unsuppressed at large energies or large temperatures. 
This question is not fully answered by previous calculations for the following reason 
[23, 24]. From simple energy considerations we expect that for energies larger than 
the barrier height which is of the order of Esp  ~ mw/e~ w (the subscript "sp" stands 
for sphaleron), the anomalous processes are no more associated with tunneling and 
therefore should be essentially unsuppressed. But this seems to be in conflict with 
instanton based estimates. For B and L violating Green functions such as 
( (qqq~)~0 ,  where ng denotes the number of generations, to be non-zero one needs 
gauge fields with topological number one in order to provide for the necessary 
number of zero modes of the fermions. The euclidean action of the configurations 
with Q = 1, where Q is the topological number, is greater or equal to 87r2/g 2. This 
is true at zero as well as at non-zero temperature [9, 25]. Therefore B and L 
violating Green functions always encounter at least one factor of exp( -8~r2 /g  2) 
[23, 24]. Arnold and McLerran [17] proposed a solution to this conflict. They argue 
that Green functions of the form ~(qqqf)'gWncpm>, where W denotes generically 
W -+ and Z bosons and cp stands for the physical Higgs scalar, can lead to an 
effective vertex which is not exponentially suppressed in the coupling constant for n 
and m of the order of 1 / a  w. Their argument is based on the following simple 
physical picture (see also ref. [14]). Since the process mediated by the sphaleron is a 
classical one, it involves a large number of quanta. To cross the barrier, the fields 
must configure themselves into a physical sphaleron with energy - m w / a  w and 
radius - 1 / m  w. When the sphaleron decays, the momenta of particles in the final 
state will be typically m w. Therefore the sphaleron will decay into - 1/c~ w W -+ and 
Z bosons, producing the quarks and leptons as a side-effect due to the anomaly. The 
relevant B and L violating Green functions should therefore involve a large number 
of W, Z a n d / o r  Higgs bosons. Arnold and McLerran [17] argue that instanton 
estimates to amplitudes break down in the classical, many-quanta limit where the 
sphaleron estimates are made. 

We want to check if this reasoning is correct, at least semi-quantitatively. To this 
end we calculate instanton induced B and L violating vertices in an electroweak-type 
model. This is done by calculating B and L violating Green functions with and 
without many W, Z or Higgs bosons by expanding the path integral around 
constrained instantons [26]. The corresponding B and L violating S-matrix ele- 
ments are obtained from the amputated Green functions according to the LSZ 
reduction formula [27]. It is shown that the leading-order S-matr ix  elements are 
local and of order n ! e x p ( -  Sins,), where n is the number of external bosons. 

We observe that perturbation theory in the instanton sector of the electroweak 
theory breaks down for n -  1/c~ w and energies E - m w / e ~  w. Note that these 
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numbers  nicely fit onto the estimates from the sphaleron analysis [13, 14, 17]. The 
energy just corresponds to the barrier height between topologically inequivalent 
v a c u a ,  Esp - 10 TeV. From naive considerations, Manton [13] suspected that at this 
energy scale or higher conventional perturbation theory is completely unreliable. We 
make this explicit in the instanton sector of the electroweak theory. 

We study semi-quantitatively the cross sections of the processes q + q -~ 77 l + 3g' 
+ n wW + n hqo. For n w = n h = 0 the cross section is much too small to be ever 
observable. The cross section at high energies is larger if W, Z and Higgs bosons are 
in the final state. If we naively extrapolate the instanton-based results we observe 
that the cross sections grow with center of mass energy and reach, for n - 1 / ~  w, 
1 pb at center of mass energies of the order of tens of TeV*, but we must stress that 
this occurs outside the range of validity of instanton based calculations. So the 
question whether anomalous electroweak B and L violating processes can be 
observed in future pp colliders is still open. 

2. Fermion number violating Green functions 

We consider the electroweak theory with rtf massless Weyl fermion doublets, +(i), 
i = 1 . . . . .  n f, in the limit of vanishing Weinberg angle (with c~ w fixed). For three 
generations, n f =  12. We are working in euclidean space-time. The euclidean action 
of the model reads 

where 

s = s~ + s~ + s~, (1) 

sg = fd4x+tr(F..F,.~), (2) 

Sh = f d a x { ( D f l ~ ) * D ~ +  X ( ~ * ~ -  ~v2)2}, (3) 

I Ilf . . > 
sf = fd4x  - i  Y'~ ~(')*6.D~ (') . (4) 

i=1 

Here we have defined 

D =  0 u - igWu, 

W~= (ou/2)W~, (5) ,  (6) 

~. = ( i ,  - , , ) .  (7) ,  (S) 

* The quoted numbers  should not be taken too seriously. There are many uncertainties in the 
calculation which require a detailed analysis. This, however, is beyond the scope of the present paper, 
which concentrates on the qualitative aspects. 
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In this model the divergences of the fermion number currents are anomalous, 

g2 
OJf~., = - 16~r 2 tr(F..F*~'~), (9) 

where F.* = i rap  5%.xpr  is the dual SU(2) field strength. For this reason one expects 
that the change of the fermion number f(i) in the external field is connected with 
the topological charge Q. 

Af (i)= -Q,  {10) 

where 

g2 f d4xtr(F""F~*) (11) 
Q -  16~r 2 

We are interested in Green functions of the type 

> ~(i) ( x ~  . G ( X l  . . . . .  Xn r) = aiol i ,  t~ (12) 

Here the latin indices a i = 1, 2 stand for weak isospin, and the greek indices c~ i = 1, 2 
for spin, respectively. In the standard model with three generations a non-zero value 
of this Green function implies, according to the LSZ reduction formula [27], the 
existence of the process 

ql + ql ~ ql -]- 3Ct2 + 3q3 q- g;1 + ~2 + ~3 , (13) 

or the corresponding CP conjugated process, where particles are replaced by 
anti-particles and vice versa. Here the subscripts label the generations, which we 
take to be three. The (anti-)quarks of the same generation should have different 
colors in (13). The fermion number of each "flavor" is changed by one unit in the 
process (13). So one expects that this process is induced by gauge fields with one 
unit of topological charge. The fact that the Green function (12) is non-zero was 
established by 't Hooft [1]. It is given by the euclidean path integral 

t / f  

G(x 1 ..... x,,~) = fQ_l[dW][debl[d+*][d~ lexp{- S[W, Cb, ~*, ~/] } i~=l+(')(xi), 

(14) 

where the measure of the gauge fields in the unit-winding-number sector of the 
model is understood to contain also the gauge fixing and + stands collectively for 
all fermions in the model. We have dropped the indices in eq. (14) for notational 
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simplicity. 't Hooft  [1] considered the semiclassical calculation of (14) by expanding 
the integrand in eq. (14) around the unit-winding number instanton [2], which is 
given in the so-called singular gauge by 

2 02 "q~,~ (x - z)~ 
W~C](x) - g (x - z) 2 (x - z) 2 + O 2 (15) 

Here ~ are the 't Hooft symbols [1], and z, and 0 denote the instanton position and 
scale, respectively. In the absence of fermions and without a potential for the Higgs 
doublet he got for the vacuum to (gauge rotated) vacuum transition amplitude, 

where 

the answer 

Z[o q = fQ=t[dWl[d~lexp{ -So[W, ~1},  (16) 

so[w,~]= fdnx{ ~For" ID.~I 2) 4. ,u ,v~ tzv -}- (17) 

dZo ['] = ro(p)d4z dp.  (18) 

Here rio(p) is the instanton density in the theory with action S o (17), given by 

ri0(0) = --4~r2 ~-T e x p ( - a ( 1 ) - a ( ~ ) ) / z 4 3 / 6 e x p  g2(#)  

where [1] 

a(1) = 0.443307, a(½) = 0.145873. (20), (21) 

/z is the renormalization point. The infrared divergence in Zo [11 is cured by the Higgs 
field expectation value which provides a cutoff in the 0 integral. Strictly speaking, 
for v ¢ 0, there does not exist a finite action solution of the classical euclidean 
equations of motion. But in the limit pv << 1 both classical equations can be solved. 
The solutions are eq. (16) and [1] 

(0) 4~Cl(X) = (22) 

Therefore, in addition to ri0(P), there will be a factor exp( -SH) ,  where 

S H = S h [  (~cl , W cl ] = q-g2u2,02 Jr" O ( ~ k u 4 p 4 )  . (23) 



6 A. Ringwald / Breakdown of perturbation theo O, 

The integral over P now converges and is dominated by pv ~< 1. The source terms 
which have been dropped in the euclidean equations of motion are proportional to 
U 2 and are therefore indeed suppressed by O2v 2 << 1, justifying the approximation. 

The reason, why we are concentrating on Green functions of the type (12), is the 
fact that we need only the knowledge of the fermion zero modes in order to 
calculate it semiclassically. This is true for Green functions in which each different 
fermion flavor appears exactly once. Collecting all results so far we obtain in the 
one-loop approximation 

nf 

G(X1, Xn/) = fdaz dpY~o(P)det~(p)exp(-~r2v2O 2) I--1 ~,~,(xi- z). 
i=1 

(24) 

The zero modes of the euclidean Weyl equation in the presence of the instanton are 
given by [1] 

[ 203 )1/2 i (x~°~)~h %~ 
@°~(x) = 1 ~r~- Ixl (X 2 --[- p2) 3 /2 '  

(25) 

where % = (i, a). The instanton is at the origin, z = 0, in eq. (25). The prime at the 
fermionic determinant means that zero modes should be omitted. For n f Weyl 
doublets it reads [1] 

det~(0) = exp( - 1  In +n,a(~)) 5nf  /-tO (26) 

To proceed it is useful to go to the Fourier transform of eq. (24). It is given by 

where 

G ( p l  . . . . .  P,,~) = (2~r) 46(4~ Pi (32~r2) "~/2 
i 

X 
( ,uPl ) alK 1 

(p , )2  (p,f)2 

t l  f 

rondo (P) I-IL(PIPil) X p3"f/2~l 
i=1 

(27) 

~ (p )  = ~ o ( p ) d e t ~ ( p ) e x p ( -  q'72U2p 2) (28) 
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is the instanton density of our model. The functions f, in eq. (27) are defined by 

3 fo ~ Jl(olP, lx) (29) 
L(olp,  I) - ofp, I d x x ( 1  + X 2 )  5/2 " 

Note that fi(olPil) is regular for IPil -* 0. It has ~(0) = 1. 
The amputated Green function is obtained from eq. (27) by removing the 

propagators for the external legs. It is proportional to 

(;1) J: ff(Pl . . . . .  P,,,) = (2qr) 4•(4) Pi (327r2)  nr/2 dpp3nr/2~t(P) l-Ifi(plpil). (30) 
i=1 

The S-matrix element for the process (13) is proportional to (30), evaluated on-shell 
= 0 ) ,  

tl f ) 
P ( p ,  . . . . .  p,f)lpy=0 = (2~r)48 (n) ,~ lp  , ft .  (31) 

Here we defined the effective coupling constant of the fermion number violating 
vertex by 

~=_ (32,.rr2)"r/2 fo°Cdpo3nr/2~t(p) 

( 8.2)l  ,9+7.f,Jlar( = (32'z2)"r/2ce-"~%xP gS~)  ~(vr2v2) 19 + 7n r 

where 

a = ~ ( 1 ) -  (n r -  1)~(~),  b =  
43 n r 
6 3 '  c = 4~r--- 2 g2 ] • 

(33), (34), (35) 

The on-shell amputated Green function (31) describes, according to the LSZ 
reduction formula [27], a fermion number violating n cfermion point-interaction. It 
has to be multiplied with the wave functions of the external fermions in order to 
obtain the S-matrix element for the process (13). It should be noted that our result 
is equivalent to 't Hooft's effective lagrangian [1]. The advantage of our approach is 
that it can be easily extended to calculate also the instanton contribution to fermion 
number violating Green functions involving many W, Z and Higgs bosons, as will 
be seen in sect. 3. 
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Let us plug in numbers. We take sinZ0w = 0.23 and /~= 100 GeV for the 
renormatization point. Then 

gZ(~t) = g2(100 GeV) = 0.406. (36) 

Using this and v = 246 GeV we get 

,if= 1.6 × 10 lOl GeV 14, (37) 

for the case of three generations, nf = 12. The cross section of the reaction (13) is 
estimated by 

6(qq ~ 7~t37 ) -- c~¢2f 1--I Ip, l (2~) 48(4) P in  - Pi , 
i=1 (27r)321P,I / 

(38) 

where the dimensionless constant C contains our ignorance about the results from 
averaging (summing) over initial (final) states of the fermions, projecting onto the 
color and charge singlet states, etc. We have not calculated it since its actual value is 
unimportant  for our conclusions. The phase space integral for the fermions in (38) 
can be evaluated using the methods in ref. [28]. It yields 

1 1(4~r ) 17 ff13, (39) 
13!14! 

where ~/~ = ]Pin is 
therefore 

the center of mass energy of the colliding partons. We get 

~3(qq ~ 7~3i )  = 2 × 10 4°C.~2,~13, (40) 

The same behavior with energy was obtained from dimensional grounds by Ellis 
et al. [23]. Here we determined the effective coupling constant more accurately by 
integrating over all scale sizes which includes small scale sizes. Our naive formula 
has no form factor in it. We will soon argue that instanton based perturbation 
theory breaks down at ~/~- mw/e~ w. At this energy a form factor could arise which 
cuts off the rise in the cross section, but unfortunately we cannot rely on perturba- 
tion theory in the instanton sector in order to calculate it. The cross section (40) 
reaches the unitarity bound, l / g ,  only at very large energies, 4 × 108C -1/28 GeV. 
Plugging in numbers we get at v~ = 10 TeV, for example, 

--~ 5 X 1 0 - 1 3 8 C  G e V  2 = 2 × 10-129C pb.  (41) 

This parton cross section has to be convoluted with parton distributions in order to 
get the observable cross section for the anomalous baryon and lepton number 
violating process (13) in a pp collision. But is clear already from (41) that the cross 
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section for the process (13) is much too small in order to be observable in future pp 
colliders such as SSC, for example• 

3. Many-particle Green functions 

The fact that the processes (13) are very much suppressed does not necessarily 
mean that the total inclusive cross section for fermion number violating processes is 
unobservably small at large energies. As mentioned in sect. 1, the sphaleron picture 
suggests that reactions like 

q + q ~ 7 ~ +  3~a+ nhqO + nwW, (42) 

could occur more frequently. 
Let us now consider fermion number violating Green functions with additional 

W, Z or Higgs bosons: 

{"f fi ) a 1 . . .  a .  a GX, ~,,(xl, x~ y~ yn)= H~('~ (x,) w~/(y/) 
i = ]  I j = 1 

(43) 

fi ) O(x~,.. x~,,y~ ..... y,,)= H~,(" (x,) ~(~)  , 
• ' ~='tl TaiOq j ~  1 

(44) 

or "mixed"  Green functions involving both Higgs and W(Z) bosons, which we do 
not display explicitly for notational simplicity• These are the relevant Green 
functions in order to discuss the processes (42) (or the CP conjugated processes). 

We want to consider the instanton contribution to the Green functions (43) and 
(44). However, in calculating (43) or (44) by steepest descent the following problem 
arises• If we were naively to calculate these Green functions using the pure 
Yang Mills instanton (15) together with the expression for the physical excitation 
corresponding to the scalar configuration (22), 

v[( z,2 lj21 
¢ ' ( x ) = ~ -  ( x - z )  2+02 - 1 ,  (45) 

we would arrive at an expression in momentum space which has poles - 1/k2 for 
the gauge and Higgs fields at zero momentum• To be definite, calculate the Fourier 
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transforms of eqs. (15) and (45) for z = 0. These are given by 

i 2~l<,..k. ~K2(plkl)p2k2) • = 7 ( 4 . )  (46) 

75 (47) 

Note  that the integral in eq. (47) behaves as -12k2p2 as k2--+ 0. We observe 
explicitly that using eqs. (46) and (47) in the calculation of the Fourier transform of 
eqs. (43) and (44) will lead to the absurd conclusion that an exponentially small 
instanton effect is potent enough to prevent the Higgs phenomenon from occurring. 
The reason for that behavior is that (15) and (45) produce long range effects since 
they behave asymptotically like an inverse power of x. 

A systematic method to estimate Green functions of the type (43) and (44) has 
been described by Affleck [26] and has been used in supersymmetric QCD [29, 30]. 
This method deals with the problem that no finite action solution exists with 
nonvanishing boundary conditions on the scalar fields (as mentioned above). For 
this reason one introduces a constraint in the path integral, 

(48) 

where (_9 is a local operator of dimension d > 4 and k is a jacobian. Next one 
Fourier transforms the 8 function, 

(49) 

One next performs the path integral (and the ~o integral) with p held fixed. This 
amounts to calculating with a modified action (which is referred to as the con- 
strained action) 

& = s + i ~ f d 4 x  e .  (50) 

The path integral (and the ~0 integral) may now be performed by steepest descent. 
The ~o integral is deformed into the complex plane so that the coupling constant, 
i~0, is real at the saddle point. For appropriately chosen operators (P, such as tr F 3 
and (~btcb- u2/2) 3, classical solutions will exist. Since the operators @ are con- 
structed entirely out of boson fields, the lowest order perturbation of the fermion 
zero modes are independent of the constraint [29]. For I xl ~< 0 << 1/v the equations 
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of motion can again be approximated by neglecting the source terms, i.e. eqs. (15) 
and (22) are approximate solutions in this region. However, at large distances the 
source terms become important. They produce mass terms for the gauge and Higgs 
fields which cause exponential decay of W~ (to a pure gauge) and q~ (to the 
expectation value), 

4,rr 2p 2 
w;c'(x)  - o Q(x), (51) 

g 

u 
~ d ( x )  = --~[1--2~202G"~h(£)]( 0)1 ' (52) 

where m w = ½gv and m h = 2 ~ t 3  denote the W boson and Higgs boson masses, 
respectively. Here G m denotes the solution of 

(- 0 2 + m2)G,,(x) = 8(4}(x). (53) 

This function decays exponentially, G i n - e  mlxl, at large Ix]. The approximate 
solutions, eqs. (15) and (22), represent the first terms in an expansion in v, valid at 
Ix] << 1/v.  The solutions of the linearized equations (with the mass term), eqs. (51) 
and (52), are the first terms in an expansion in p, valid at ]x] >> p. The two 
expansions can be matched in the intermediate region p << ]x I << 1/v.  To lowest 
order (9 can be neglected entirely. Since the constrainted instanton decays exponen- 
tially at large Ix] it does not affect the long range behavior of the Higgs theory. By 
working with the constrained instanton one therefore should recover the poles at 
k~ = - m  2 in the Fourier transform of eqs. (43) and (44) (the minus sign comes 
from the fact that we are working in euclidean space-time). From eqs. (51) and (52) 
we obtain the Fourier transforms near the W(Z) and Higgs boson mass shell, i.e. 

2 for k 2 + m w(h) ---> 0 ,  

~ acl  4 ' r r2 k. v 2 'n" 2p 2 
W~ (k)=i g ,...k2+rnw2 O 2, e}C'(k)-  ~- k2+m2, (54) , (55)  

which makes this explicit. 
Now we turn to the actual computation of the Fourier transform of eq. (44) (a 

similar formula holds for eq. (43)), 

G ( p l  . . . . .  P . f , k l  . . . . .  k, ,) 

( 2 ) 4  (4)( "~=lp;+/~=lk )(327r2 ) 
J 

i 

O" P" .: ( .p, ) .... (°.p.',)°o:,,, 
(p.,/ %° ,%,° ° , 

× fo dpp3"#2n(P) 1-IL(plpil) ~Cl(kj). (56) 
i = 1  j = l  
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This formula holds as long as the 0 integral gets cut off at small p ~< 1/v [26]. Using 
eq. (55) we obtain, near the Higgs bosons' mass shell, k 2 + m~ ~ 0, 

G( Pl ..... P,,r, kl . . . . .  k,,)lky+~,~o 

(" = ( 2 ' 7 T ) 4 ~  (4, t~lPi-~- kj ( 32q7 "2 )  n f / 2  ( ° " ° 'P~t )a lS ; l  " • • (°ttP~'~f)~; ftcnf 
'= = (p,)2 (P,,r ~ K I ~ I  " • • ~KnfOtn f  

t l  t l  

X ( -  "f v \ (2z.2),,1_1[ 1 foOO " '  ) [ ~ ' - )  j = l  (kj)2q-m 2 dpp3n'/2+2n~l(P)Hfi(PlPi[)'i=l 

(57) 

for the Fourier transform of eq. (44). Using eq. (54) we obtain in a similar way the 
Fourier transform of eq. (43) near the mass shell of the W(Z) bosons, k~ + mZw ~ 0, 

" 6 '  . . . . . . .  k l , .  " k,,) ik~+mZ ~o G~,. . .m,(Pl . . . .  ,p,,f, ., 

) = (2 ' r r )  48(4) Pi + L kj (32q'r2) " f /2 (o"Pf)altq 
i= j= l  ( p l )  2 

( OIxPngr)a,f~,,f 
pnr) C'q~l " • • ~tCnfO~nf 

/ 4~r2)" ~ fo ~ nf 
j=l  (kj)2 + m 2 i=1 

The corresponding amputated Green functions will be proportional to 

F,,q~( Pl . . . . .  Pnf, kl  . . . . .  k,,)lk~ +m~O 

k 11 f ?1 \ 

= (2'27")4~(4) i=lE P i  + j~=lkJ) (-11"(32~r21 "f/22"/z~r2"U" 

I1 f 

x do 03"'/2+2"~(0) l-Ifi(olPil), (59) i=1 
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for the fermion number violating Higgs boson vertex, and 

H a  I . . .  a F . . . .  (p ,  . . . .  p,,~ k t , . .  k,,)lk2+,,2+o 
t l W  ; ~ 1  " " " ,O'n ~ ' " ' 

=(2¢z)48 (4) E p , +  kj i"(32qr2) "f/2 4~r2 
i=1 j=l  ~ J =lT]aJ"jvk; 

n f  

fo°~dP [IL(oIpA), (60) X p3nf/2+2n~(p) 
i = 1  

for the fermion number violating W(Z) boson vertex, respectively. Evaluation of the 
p integral for p2 = 0 gives 

8~r 2 
c e-"/~%xp g2(/,) 

19 + 7nf ) 1 -n-(19+7n¢)/12I" + (61) "~ ( Cr 2U 2 ) n 12 " 

Using eqs. (32) and (61) we can write eqs. (59) and (60) as 

F n q a ( P l  . . . . .  Pn r, k l  . . . . .  k n ) [ p Z = O ; k 2 + m 2 + O  

and 

= (2~r)48~ 4) "' L )  £ p i +  kj (-1)"ff2"/2v -"U(n+(19+7n~)/12} 
i=1 j=l  / '((19 + 7nf) /12)  

7 W ; >  1 . . . . .  p . , , \  P ' I ,  • " • , Pn r ' " ' ' ~  

"' L )  = (2~r)4~ ~4) Y~pi+ kj 
i = 1  j = l  

, (62) 

respectively. The extension of (62) and (63) to "mixed" vertices involving both 
Higgs and W(Z) bosons is straightforward. In order to save place we omit the 
explicit expression. 

We again arrived at local (12 + n)-point vertices for the processes (42). These 
effective vertices are only valid for n < 1/a w or n < ~r2/2t. This is for the following 
reason. The p integral is dominated at P0 = vCn/(rrv) . However, in order that the 
formula for the instanton density (28) be true, we must require Po << 1/mw(mh), 

¢t 

F((19 + 7nf) /12)  f i  ~,~,~k;, (63) j=l  
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which leads to n << 1 / a  w or n << ~r2/X. The maximal number of W(Z) bosons for 
which our effective vertex is valid is therefore of the order of 30. Since the quartic 
Higgs coupling )t or, equivalently, the Higgs mass are unknown, the maximal 
number  of Higgs particles is uncertain. The highest value one could achieve is for 
the Higgs coupling of the order of g4. In  this case one gets n m a x  - -  60. 

In addition, n < 1 / a  w, v2/X is also a general consequence of unitarity. When 
n >~ 1 / a  w, perturbation theory breaks down. We can see this by looking at the 
dependence of a multi-particle scattering amplitude upon one of its momenta  (see 
fig. 1). If we make a radiative exchange of a W(Z) boson we get a factor of aw- It 
can tie to n legs. The correction is therefore of order naw. That means that 
n << 1 / a  w is necessary so that a weak coupling analysis is reliable. Similar argu- 
ments apply also for the Higgs field. 

The restriction on n means also a restriction on the energy where our effective 
vertices are valid. If E is the center of mass energy than by energy conservation the 
typical multiplicity will be n <~ E / m w ( m h ) .  From these considerations we see that 
for E >1 m w / a  w a weak coupling analysis in the instanton sector is unreliable and 
we can only extrapolate and guess. Note that the energy corresponds to the 
sphaleron energy ,  Esp , the height of the barrier between topologically inequivalent 
vacua in the electroweak theory [13, 14]. For energies larger than Esp one would 
naively suspect instanton based calculations to break down [13, 17]. Unfortunately, 
this is just the region where our results are most interesting, as we will see now. 

Let us estimate the cross section for the processes (42). Using the effective vertex 
(62) we obtain 

2 . . [  F ( n h +  103/12) ]2 .  
1./¢/(qq --* 7Ct3~nhqO)l 2 oc .(~22nh/)- [ F(103/12)  (64) 

F rom the properties of the ~/ symbols [1] it follows 

~r/...k"{~"q,,~xkX{*" = - 8a~k 2 = aaam2w, (65) 
{ 

(no sum over a),  where { are the polarization vectors of the W(Z) bosons. That 
means that we get from the effective vertex (63), if we inclusively sum over W + and 

p~ / k l  
P 2 \ ~  k2 B__ kl P2 " "k2 ~ B\ ~kl + P2~ k~ 
Pl? - - ~ ~  "2-''kn = p ~ k n  Pl; i !-kn 

+ . . -  

Fig. 1. Radiative correction to the B and L violating amplitude through W(Z) exchange. 
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Z bosons, 

~_~ IJl(qq+ 77q3dnwW)12(xfy22"~v 2,,w[F(nw+103/12) ] 2 
{,'s,,'.~} F(103/12)  3 n~ . (66) 

Again it is straightforward to write down the matrix elements also for the "mixed"  
channels. F rom these we estimate the cross sections of the reactions (42), 

8 (qq  --+ 7E13/n wWnhCP) 

. r r ( , ,  + 1o3/12) 1 
~ C~22nv 2hi -F--('~3--7~ ~ 3nw 

i 0  d3pi (2~) a8(4) (2 ),21p,i IP, I IeI dBk' 
= j= t  (2~r)32Ej 

l o  

Pin - E p ~ -  kj 3",  
i=1 j= l  

(67) 

where n = n w + n h. The statistical factor 5 ~ is given by 

5 °= - -  (68) nh!nw! 
contains the result from averaging (summing) over initial (final) states of the 

fermions, f rom the projection into color singlet and charge neutral states etc. The 
phase space integral in eq. (67) gives 

1 ½(4~')-17-2,, £I~+,,, (69) 
(13 + , , ) ! (14  + , , ) !  

in the extremely relativistic case, E i >> mw(mH) [28]. 
Fig. 2 shows the parton cross section (67) for C = 1 as a function of the parton 

center of mass energy for different values of n = n w + nh, where we took n h = nw/3. 
This figure shows also, for comparison, the s -wave  unitarity bound, 1/£. It is 
reached for n = 50 already at around 60 TeV, whereas for the exclusive channel, 
n = 0, it is reached only at - 105 TeV. In fig. 3 we display the energies at which the 
unitarity limit is achieved as a function of the number of bosons produced in 
association. At least at these energies the leading-order calculation breaks down and 
one has to take into account higher-order corrections. From fig. 3 we infer that the 
leading-order amplitudes become strong, of the order of 1 pb, already at around 30 
TeV. The relevent processes are those with a large number of external bosons, 
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-10 

-30 

-5o 

,~ -70 
_~ -gO 

-110 

-130 

~ n --(3 

10 102 103 104 105 105 
[TeV] 

Fig. 2. Parton cross sections for the reactions q + q ~ 7~ + 3~+ nX, where X stands collectively for W, 
Z, and Higgs bosons, for different numbers of n. The dashed line gives the s-wave unitarity bound, 

n -  ~/~/m,v, such that the emitted bosons are non-relativistic. We see that our 
results are most interesting when n >> 1 / a  w and v/~-  10 TeV. Unfortunately these 
values are beyond the validity of the instanton-based calculations and eq. (67) and 
fig. 2 give only a guess of the expected cross sections. The constant C can of course 
change these values, but the qualitative behaviour of the cross sections remains the 
same. 

The actual observable cross section for baryon and lepton number violating 
processes in the collision of protons is obtained from eq. (67) by convolution with 

106~ - -  , , • , , ~ / 
lo% 

1041 " ~  
103 

10:![ 

~ol 
non-re[ 

0 20 40 80 140 fl 

Fig: 3. The center of mass energies, f~ ,  at which the unitarity limit, - 1/A is reached, as a function of 
the number of associated bosons, n. The sol id/dashed line corresponds to the use of the relativistic/ 

non-relativisic phase space formula from ref. [28]. 
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parton distribution functions (projected into the color singlet state). This should be 
done in a future work. 

4. Conclusions 

We considered baryon and lepton number violating processes induced by instan- 
tons in an electroweak-type model. We showed that exclusive processes like q + q 
77q + 3~ are too much suppressed by the exponential of the instanton action in order 
to be observable. We observed that the parton cross sections for the inclusive 
processes q + q ~ 7q + 3{+ n X ,  where X stands generically for W +, Z and Higgs 
bosons, can be much larger at high energies, but we showed also that perturbation 
theory in the instanton sector of the electroweak theory breaks down for n >/1/c~ w 
and E >~ m w / a  w. That this happens at these values of n and E was suspected 
before by Manton [13] and Arnold and McLerran [17]. We have made it explicit 
through our calculations. Our work puts the arguments by Arnold and McLerran 
[17], that there is no contradiction between instanton estimates and sphaleron 
estimates, on much firmer ground. 

If we naively extrapolate our patton cross sections to energies of the order 
of tens of TeV and n of the order of 1/c~ w (these numbers can change by a detailed 
calculation of the constant C, but the qualitative aspects, in particular the 
rising of the cross sections, remain unaltered), we obtain a cross section for 
q + q ~ 7C1 + 37+ nX of the order of 1 pb, but unfortunately we are then outside 
the range of validity of the weak coupling analysis in the instanton sector and our 
result only gives a guess for the expected cross section. Somewhere the rise in the 
cross sections has to be cut off by nonperturbative physics. For this reason we 
cannot definitively decide if the anomalous electroweak B and L violating pro- 
cesses can be observed in future pp colliders. Nevertheless, the results obtained are 
suggestive and justify a more detailed analysis. 

I would like to thank A. Ali, J. Fuchs, J. Kripfganz, M. Lfischer, M.G. Schmidt, 
C. Wetterich and A. Wipf for helpful discussions. I would especially like to thank L. 
McLerran for encouragement, valuable discussions and useful hints. 
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