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The relationship between classical euclidean field configurations and particle production in 
the electroweak theory in the presence of an instanton is examined. A new calculation of the 
W-boson propagator corrections to the (E/&J2 contribution to In (T is given. It is shown 
explicitly how these corrections are related to minimum action configurations of well-separated 
instanton-anti-instanton pairs. 

1. Introduction 

In this paper we examine the relationship between particle production in the 
presence of an instanton [l-3] and classical euclidean field configurations which 
minimize the action of an instanton-anti-instanton pair at a fixed euclidean 
separation [4-91. If one writes the cross section for W(p,) + W(z+) --) g antiquarks 
+ many W-bosons as [lo-121 U(Y e(-47/n)F(E/E ) 0 with E the center-of-mass energy 
of two incident W-bosons and with E, = firA4w/~~, then we explicitly treat the 
“low-energy” terms in F of size (E/E,>4’3 and (E/E,J2. The main purpose of the 
paper is to compare the method developed in ref. [lo] with the valley method 
[6-81. Through order (E/EJ2 we demonstrate that these methods are equivalent. 
As a by-product we perform an independent calculation of the W-boson propaga- 
tor contribution to the (E/EJ2 term, a term around which there has been some 
controversy [8,13,14], and confirm the result of Khoze and Ringwald [81. Our final 
answer to this order is 

F(E/E,) = 1- ;(E/E,)~/~+ $(E/E,)~. 

The i( E/EJ413 is the term found in ref. [lo]. The ;(E/E,j2 term is the same as 
the result of Khoze and Ringwald and consists of parts which have been previously 

*Research supported in part by the Department of Energy. 

0550-3213/91/$03.50 Q 1991 - Elsevier Science Publishers B.V. All rights reserved 



110 A. H. Mueller / Semiclassical corrections 

discussed. The first part is Higgs production. (Higgs propagator corrections are not 
important at the level of approximation considered here.) A second part is the 
finite W-boson mass correction to the leading-order semiclassical result. The third 
part is the W-boson propagator correction at M$, -=K k2 -=K l/p2 with k a typical 
momentum of a produced W-boson and p the instanton size. At this level the 
zero-mode problem for the W-propagator does not arise. Khoze and Ringwald 
have not included W-boson mass corrections, the 6th term on the right-hand side 
of eq. (261, though they are included implicitly in their Higgs term. This mass 
correction was first given in ref. [13]. Higgs production, the 5th term on the 
right-hand side of eq. (261, is well known [l-31. The result of ref. [81 appears 
different in the Higgs part because the W-boson mass term is included there. The 
W-boson propagator correction, the final term on the right-hand side of eq. (26), 
has been previously calculated in refs. [8,13,14]. Our calculation, given in sect. 2, 
agrees with the answer given in refs. [8,14] but disagrees with the answer given in 
ref. [13]. We feel that this disagreement is not of a profound nature. 

In sect. 2, we briefly review the main results of ref. [lo] giving the total cross 
section for the semiclassical production of particles in the one-instanton sector. 
We then carry out a calculation of the W-boson propagator corrections at the level 
of (E/E,)’ corrections to F(E/E,). 

In sect. 3, we give a formula for minimizing the classical euclidean action for an 
instanton-anti-instanton pair at fiied euclidean separation. In general, one must 
deal with the zero-mode problem, however, there are no essential difficulties 
which arise when calculating F to order (E/E,J2. We then show how the 
formalism of ref. [lo] is reproduced by taking the imaginary part of the exponential 
of this classical action when continued to Minkowski space in .x2 with x the 
instanton-anti-instanton separation. We then show that zero-mode difficulties 
only arise at order-(E/E,)s/3 terms in F. 

Of course, the semiclassical expansion in powers of (E/E,)2/3 is not guaranteed 
to be useful for the baryon number violation problem. While we expect the valley 
method to give the semiclassical corrections correctly so long as the 
instanton-anti-instanton separation is large compared to the instanton size, the 
interesting region of E/E,, on the order of 1 probably involves instanton-anti- 
instanton separations comparable to the instanton size. In addition, there are 
high-energy corrections to the initial particles involved in the scattering which may 
not be semiclassical [15,16]. 

2. Expansion of the cross section for E/E,,, =z 1 

In this section we shall briefly review the calculation of the leading semiclassical 
production cross section in the presence of a single instanton [lo]. As is well known 
this leading semiclassical cross section is due to W-production with the Higgs field 
only serving to cut off the large instanton sizes. [As usual we assume sin’ 8, = 0 so 
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Fig. 1. The total cross section for 2 Ws -+ n Ws. The circle with the wiggly line represents a classical 
(instanton) solution continued to Minkowski space and evaluated on-shell after extracting<&. 

that only the SU(2) part of the usual SU(2) 8 U(1) electroweak theory is effective. 
For simplicity we also suppose that the Higgs coupling, A, and my, are comparable 
so that the masses of the Higgs particle and the W-mesons are not too different.] 
Next, we shall calculate the next-to-leading low-energy corrections. Here both 
W-bosons and Higgs particles are important, though only the propagator correc- 
tions of the W-bosons present any technical difficulties. 

2.1 THE LEADING SEMICLASSICAL APPROXIMATION FOR E/E,, < 1 [lo] 

In the leading semiclassical approximation, illustrated in fig. 1, 

iiR~*(S’,ki,p’2)R~(S,ki,p2)(-‘), 
i=l 

(1) 

where the two incoming W’s have momentum p1 and p2. p and p’ are the scale 
sizes of the instantons in the amplitude and in the complex conjugate amplitude, 
respectively. Let AE(g, X, p2) be the instanton field continued to Minkowski space, 

-qL x9 P2) = c v,d(S) 
2p”ijk-,?x, 

a’ g(x%e)(x2-p’-ie) ’ (2) 

where 5 specifies the orientation in weak isospin space and where 5j’,;) = eoij, 
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$J = i6,, and 7:;; = -YiL;i. Then defining 

A”,(S,k,p2)=i/d4~e-ikrA~(5,x,~2) (3) 

one has 

with 

(5) 

and where U&&J gives a rotation in weak isospin space. It is convenient to work in 
the center-of-mass frame where pi +p2 = (E, 0,0,0X Then so long as E/E,, -=ZZ 1 
we shall see that the produced W’s are relativistic so that the massless gauge field 
approximation used in eq. (2) is justified. The phase space integration in (1) may 
also be approximated by the phase space for zero mass W’s. Replacing the 
(2~r)~ a4(p, +p2 - Cy- ,ki) by an integral over the position of the instanton in the 
complex conjugate amplitude relative to the position of the instanton in the 2 + n 
production amplitude, 

gives an exponential series in (1). One finds 

/ 
4T2 

ucy dp2dp’*dU(g)dU(g’)d4Xexp -iEt- (Y -(p2+p’2)~2u2 

-/ 

eik.X d3k 

(2?T)32Ek 
R~(5’,k,p’2)R~(S,k,p2) , (6) 1 

where only the terms explicitly relating to W-production have been kept in u. Of 
course u is a cross section for baryon number violation, however, the factors 
explicitly relating to baryon number violation only give non-exponential prefactors 
in eq. (6) and so have been suppressed. 

It is straightforward to show that 

-R~*(S’,k,P’2)R~(5,k,P2)= FP2P”E (U-‘(5’)U(S))a,(6,bk2-kakb). 
a,b 

(7) 
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When g is small and when E2/gu2 B 1 the collective coordinate integrations can 
be evaluated in the saddle-point approximation. The saddle point is at x = 0, 
5 = Lj’, p2 = p/2. Using 

/ 
d3k 

k2 eikr = 
3 

(2r)32k 27r2( t + ie)4 

one finds 

ua dp2dtew, / 

with [lo] 

WC - 2 - 2r2v2pZFiEt + 96r2p4 
Q g2( t + ie)4 ’ 

The final saddle points in eq. (9) are at 

I 24E \“3 
t=t,=i 

i 

pLp+ 

giving 

7T2 v4g2 I 
3E4 

8d’d”g2 

w= - :(I - :(E/E,)~/~), 

with E, = 6 TM,/CL 

(10) 

(12) 

2.2. THE NEXT-TO-LEADING SEMICLASSICAL APPROXIMATION 

In the next-to-leading semiclassical approximation there are three sources of 
corrections of size (47~/a~)(E/E~)~ to the W of (9) and (10). They are: (i) 
W-boson mass effects where one simply replaces the pole at k2 = 0 in eq. (4) by a 
pole at k2 = A46 and where one keeps the phase space integral in eq. (6) as 
(1/2Ek)d3k r th a er than using the (1/2k)d3k approximation [13]; (ii> Higgs 
production from the Higgs part of the electroweak instanton. Higgs propagator 
corrections are not important when one uses the saddle point given in eq. (11) 
[3,10,171; (iii) W-production due to the W-propagator in the background instanton 
field. (i> and (ii) are well understood and non-controversial. (iii> is more subtle and 
has been the topic of much discussion recently [8,9,13,14]. The contribution of 
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Fig. 2. The 2 W + (n, + n2 + n,) W cross section including W-boson propagator effects. 

W-boson mass effects to W, (i> above, is 1131 

(13) 

while the contribution of Higgs production, (ii> above, is [l-3] 

aw(ii) = _ * 
2 2 212 

’ ’ ’ 
t* . (14) 

Our purpose in this section is to study the W-boson propagator effects. Pictori- 
ally, these contributions are illustrated in fig. 2, where the shaded “blobs” 
represent the W-boson propagator with the external poles removed. The series in 
n,, n2 and rz3 exponentiate leading to an expression for W illustrated in fig. 3. The 
first term on the right-hand side of fig. 3 is the term we calculated in subsect 2.1. It 
is the final term in the exponential on the right-hand side of eq. (6). The second 
term on the right-hand side of the equation illustrated in fig. 3 is given by [lo] 

~w(iii) = 3 
/ 

d3k, d3k2 
(2a)32k, (2r)32k2 

eGkl+kdl CRf(g’,k,,p’*) 
a,b 

x~~yb(kl,k2,5,p2)R~*(5’,k2,p’*). (1% 
To get the full contribution to the W-boson propagator corrections we should add 
the third term on the right-hand side of the equation illustrated in fig. 3. That term 
is given by the complex conjugate of the expression given in eq. (15) along with the 

Fig. 3. A pictorial representation of W as used in (9). 
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changes 5 @ g’, p * p’, t + -t. R is given in eq. (5) while l7,$,’ is the gluon 
propagator, with poles -i/k: and -i/k: removed. We may evaluate eq. (15) at 
5 = g’, the saddle-point value found earlier and, indeed, we shall simply take 
f = 5’ = 0 as gw(iii) can only depend on the relative orientation of the two 
instantons. 

One might try to evaluate rr,“y” by using the expression for the propagator given 
by Brown et al. [181, however, one is immediately confronted with the problem that 
the propagator given in ref. [18] has terms with double poles in kf or k$ The 
source of the double-pole terms is the requirement that the propagator only 
represent fluctuations orthogonal to the zero modes of the instanton. A general 
method of surmounting this double-pole problem has been given in ref. [19]. 
However, we can avoid the problem in a much easier way which is sufficient for 
the purposes of evaluating eq. (15). The key point is to realize that the effective 
values of Ik,J = k, and lkzl = k, in eq. (15) are given by k,, k, -i/t, with t, given 
in eq. (lla). But i/t, -=.K l/p, so that k,p, and k,p, are very small for the 
dominant contribution in eq. (15). One can check that zero-mode contributions to 
L$(k,, k,) are very small when klp, -=z 1, k,p, -C 1. Thus, we should be able to 
solve for Zl$Ck,, k,) when k,, k, --, 0 without having to deal with the zero-mode 
problem at all. (Possible zero-mode contributions to Z’I,‘$‘(k,, k,) are linear or 
quadratic, depending on the mode, in k, and k, as k,, k, + 0.) 

Now, formally, II,‘$(k,, k,) obeys the integral equation illustrated in fig. 4. We 
are looking for a term of size p* when k,, k, --f 0. The first term on the right-hand 
of the equation illustrated in fig. 4 is such a term. The second term on the 
right-hand side of that equation is of size p* only over the region of integration in 
k for which kp is of order one. If kp s 1 the contribution of the, rapidly 
convergent, integral is small while the region kpak,p contributes like p*(p*kf) 
when kfakz < l/p2. But in the region kp of order one there is no k,- or 
k,-dependence. Indeed, this is a general result. In order to get a contribution of 
size p* and not higher order in p*, the integrations over the instanton momentum 
must be in the region k&l/p. This means that there can be no k,- or k,-depen- 
dence whatsoever in ZI$(k,, k2) except for the k,- and k,-dependence of the first 
term on the right-hand side of the equation illustrated in fig. 4. Thus we can write 

- 4r2ip2 

g(k, + kd 
27:;,o% f Wp +ZG;,(k1, k,) 1 

. (16) 

Fig. 4. The integral equation for L$(k,, k,). 
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r mb = &,,b [ g,,( PAV 2k, + kd,, +g,,(k2 -k,)* -g*“w2 + kl),] 3 (17) 

and where &tV stands for all the contributions to fl$ except the term explicitly 
given in eq. (16). Then 

sw(iii) = 3 
/ 

d3k1 
d”k, 

(2r)32k, (2r)32kz 
ei(k,+k2)f sw(iii), (18) 

As discussed above, we can assume that II&,(k,, k,) =Ii;;b,,(O,O> =n$. It is 
straightforward to evaluate (18) and find 

(19) 

where a sum over a, b = 1,2,3 is assumed in flit. The final integrals in eq. (19) are 
easily done to give 

gw(iii) = T!!? [72+2 + ntt] . 
g2t6 

Now, what is to be done to determine &i? Surprisingly, the answer is very 
simple. Refer back to eq. (15). We have directly contracted RE and Rz with U,“:. 
We could also have done the calculation by forming the product 

where 

(22) 

with xl,kl, = 2kf and kI,k,, =?c,~E,~ = 0. g,l,(k) projects onto the transverse 
polarizations. Of course, we have the right to use gcLa instead of g,: since 
k,,R;*(k,) = 0 means that Rl*(k,) is a perfectly fine polarization projection for 
the k,-line. Indeed, since R;*(k,)kt, = 0 effectively, gPu -gP$ =x,,k,,/2kf, it 
might seem that requiring gP(, and g,“, to give the same result for 6W’“” is the 
same as requiring k,,ll,“i(k,, k2) = 0 but this is not quite right. We could expect 
k,,I7$(k,, k2) = 0 in a covariant gauge quantization after integration of the weak 
isospin collective coordinate, but in our case niy” appears in the exponential and 
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the weak isospin collective coordinate is determined by a saddle-point approxima- 
tion. Thus, our requirement of the equivalence of gPu and g& projection is 
necessary only after the k, and k, integrals in eq. (151, or eq. (18), have been 
performed. Let us then make the replacements 

in eq. (16). The requirement that either, or both, of the replacements in (23) not 
change 6W”“’ as given by eq. (18) yields the relation 

iT$ = 24dp2. (24) 

Using eq. (24) in eq. (20) gives 

6wCiii) = 
1927T2pZp’2( p2 + p”) 

g2t6 ’ 

where we have added the third term on the right-hand side of the equation 
illustrated in fig. 3 to get our final result. Eq. (25) is in agreement with the result of 
ref. [8]. 

Adding up all the contributions gives 

rr2 v”p” 127r2 
-+ 

t2 
-M$ + 384$$. 

g2 

(26) 

Using (26) in (9) and taking the saddle-point approximation gives 

cm exp 
i [ 

-; 1- ;(E/E,)4’3 + fw~0)‘]) ) 

with E, = 6 rM,/a. 

3. The relationship between the cross section and classical euclidean 
field configurations 

In this section we shall show how the discussion of sect. 2, in terms of produced 
particles in Minkowski space, can be recast in terms of classical euclidean field 
configurations. We proceed by first deriving an expression for the minimum action 
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field configuration between a widely separated instanton and anti-instanton. We 
shall work at a level of approximation where zero modes, or approximate zero 
modes, of the field configuration do not cause serious problems. At this level of 
approximation our procedure is clearly equivalent to the valley method [6-91. 
Finally, we show explicitly that minimizing the classical action leads to eq. (26). 

3.1. MINIMIZING THE EUCLIDEAN ACTION OF A WELL-SEPARATED INSTANTON 
AND ANTI-INSTANTON 

Let us write the W-boson part of the classical euclidean action of the elec- 
troweak theory as 

r(*) and rO) involve derivatives in the usual way. We suppose the gauge a,,Az = 0 
is chosen though this is not necessary for the discussion that follows. We suppose 
that the T’s are symmetric under interchange of the indices (a, CL), (b, v), (c, p) 
and (d,a). Let A;,, be an instanton centered at x,, 

2P27&l(X -xl)” 
A;Jx)= g(x-xI)*[(x-x,)*+p*] ’ 

and let A”,,,(x) be an anti-instanton centered at x2, 

A;,(x) = 
w27/!7:l(x -x2)” 

g(x-x2)* (x-x2)2+p’zl - 

(29) 

(30) 

When (x, -x2)* B p*, p’* the sum A;, + A”zp is an approximate solution to the 
euclidean field equations. For fured x,, x2, p*, p’* write Ai = A;,, + A’$, + a: and 
expand S( A, + A, + a) through second order in II. One has 

S(A) =S(A* +A*) + /d4X 
WA, +A*) 

SAz(x) $xX) 

+; d4xd4yn;(x)6* / 
S(A, +A,) 

~A;(xVA:(Y) 
a!(y) + . . . . (31) 

Now, ignoring for the moment any zero-mode complications, let us minimize 
(31) with respect to small fluctuations ai. One finds 

/ 
6*S( A, + A,) 

d4y aA;( x)fjAb,( y) ‘f( ‘) = - 
6St A, +A,) 

6A;(x) - (32) 
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Thus, one has 

with a; determined by eq. (32). 
In terms of the T’s introduced in eq. CB), 

Using the classical equations 

along with a similar equation for A, one finds 

WA, +A,) 

SA; 

Similarly, one can show, using the classical field equations (39, 

S( A, + AZ) = S( A,) + S( AZ) - / d4xA;,T,‘;‘“‘A; 

+ $ / d4x r,‘$“dA;, Afy A& A$, . 

119 

(33) 

(34) 

(35) 

(36) 

(37) 

Eq. (33) along with eqs. (32), (36) and (37) then give the minimum action for a 
well-separated instanton and anti-instanton. 

Eq. (33) can be cast into a somewhat more useful form for determining the 
dependence of S on the instanton-anti-instanton separation. To solve for a: we 
formally invert eq. (32) to obtain 

u;(x) = -/d4y 
6’S( A, + A,) 

I 

-’ 6S( A, +A2) 

~A;(xPA:(Y) S&Y) * (38) 

[We shall later comment on the zero-mode problem which occurs in writing the 
inverse operator in (381.1 When (x, -x2>* > p2, p” one can write Q, as given by 
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Fig. 5. A pictorial representation of eq. (39). 

eq. (38) in terms of the amputated vector propagator in the background field 
Al> q,, and the amputated vector propagator in the background field A,, IT& 
Explicitly, 

+r(3)~bc(.,Y)A(;“(Y)Ai(Y)]. WP (39) 

Pictorially, (39) is given in fig. 5, the minus sign in the third term in that figure 
corresponding to the fact that the plus sign in front of the rt3) term in eq. (39) has 
a sign opposite to the sign for the Feynman rules in euclidean field theory. Using 
(36) and (39) in (33) along with (37) one finds 

S(A) = G - / d4x [A;,(X) r$)abA~y( X) + $,‘$b54f,( X) A;“( X) 

-( ~~~~eA’l,(x)A;p(x))(r’2’-’ )~~(x,~)(r~~~~rA~“(x)A~~(y))] +R, 

(40) 

where R = R, + R, with 

R, = +/ d4x d4y I$;$dAc;J x) A;p( x) A;,( x) 

and where R, is obtained from R, by exchanging A, and A,. We shall shortly see 
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Fig. 6. A pictorial representation of eq. (40). 

that R will not come in at the level of approximation we are concerned with. Eq. 
(40), but without R, is illustrated in fig. 6. In general, eqs. (40) and (41) only make 
sense once one specifies a procedure for dealing with the zero-mode problem. 
However, as we shall see in subsect. 3.2 the zero-mode problem does not arise at 
the level of approximation with which we are concerned. 

3.2. THE RELATIONSHIP BETWEEN THE CLASSICAL ACTION AND 
PARTICLE PRODUCTION 

The action given in (40) depends on d( xi -x2)*, the distance between the 
instanton and anti-instanton, on p*, on p’* and on the relative orientation between 
the instanton and anti-instanton. (We have not explicitly put in the orientation 
dependence in eqs. (40), having anticipated the orientation given in eqs. (29) and 
(30) as leading to the minimum action.) Call x =x, -x2. Then we may continue S 
from euclidean values of x2 to Minkowski values. (We emphasize, however, that 
the minimization of the action is carried out in euclidean space, then the result is 
continued, in x2, to Minkowski space [8].) Consider 

Z=i~dp~dp’~d4xexp[-iP~x-~~u~(p~+p’~) -S(x*-ie,p*,p’*)], (42) 

where we have inserted the Higgs term ~*u*(p* + p’*) in the action but where we 
continue to suppress the rest of the Higgs contributions to S. We are now going to 
show that Im I explicitly generates the contributions shown in fig. 2 so that an 
alternative way of obtaining eq. (26) is to first minimize the classical euclidean 
action and then carry out the collective coordinate integrals as indicated in (42) [8]. 

To begin, let’s keep only the first two terms on the right-hand side of eq. (40). 
Then 

Z=i/dp2dp’*d4xexp -F -~*u*(p*+p~*) +/d4y~“z,(~)~~y0)“6~~,(~)-i~.~ . 
I 

(43) 
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I=i/d4xdp2dp12exp -G -~~u~(p~+p’~)-iP.x 1 
n ( - )” 

x f [So(x2-i~,p2vp’Z)] --yi--~ 
II-0 

where So can be written as 

d4k 
S,=i/- 

(27r)4 e 
lk’.’ k’A;,( k)A;,( -k) . 

(44) 

(45) 

A convenient expression for J,(k) is 

AT,(k) = - 
4rr2ip2 
-v:;lk,[d~2 [Jo(w) +J2b-v)1 (k2 _ i2 + 

g )2 (46) 
ie 

while A&(k) is obtained from A:,(-k) by p2 + p”, k + -k and Yj&l + ;iiiii = 
F&r. The integral (45) is in Minkowski space with the ie prescription given in (46) 
corresponding to the coordinate space ie prescription given in (44). The d4x 
integral in (44) is now trivial and one finds 

I=i/dp2dp”exp : -r2u2(p2+pr2) c T/ 1 O” (-i)’ d4k,...d4k,, 

n-0 (2rr)4n 

with 

~(27r)~cS~(P-k,-k~- . . . -k,,)J(k,)J(k,)...J(k,,), (47) 

J(k) =k2A;Jk)A;,(-k). (48) 

It is easy to show that 

J(k) = - 
167r2p2p12 

k2(k2 + 3k,z)imdp2 Vo(luP) +J,bP)) 

g2 ( k2 - p2 + ie)2 

X 
/ 

mdp2 Vo(PP’) +Jz(PP’)) 
0 (k2-p2+it)2 ’ 

(49) 
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For a moment keep only the p’p” contribution to J. Then, 

J= - 
16rr4p2p12 

g’( k2 + ie) 
(3k,” + k’) + 0( p’p’“) + 0( p”p”). 

123 

(50) 

Now it is a straightforward application of the Cutkosky rules [20] that 

2 Im i/ d4k,. . . d4k,, 
64(P-kl-k2...k,,)i” 

(kf+ie)(ki+ie)...(kE+ie) 

= d4k / ,... d4k,2n-6(kf)2n-6(k+.2rr8(k,2)64(P-k,-k2- . . . -k,). 

(51) 

Thus, 

21mZ=/dp2p”exp -: -u2(p2+pr2)p2 2 -$ 1 1 d3k,kf 

n=O * (2rr)32k, 

d3k,,kZ 

n 

. . . 
(2r)32k, 

(2s-)484(P-kl-k2- . . . -k,,) * (52) 

But (52) is exactly the same as (1) when (7) is used and 5’ = 6. Thus, we have 
shown that the imaginary part of I reproduces the leading semiclassical production 
of vector particles. 

Now let us complete the argument for the rest of the terms in eq. (40) along with 
the higher-order terms in p and p’ which we neglected. There are really only two 
essential points. First, expand I in (42) to give 

= (-1)” 
I=i/dp2dpr2d4xexp[i(P*x) -,~u~(p~+p~‘)] c T[S(x2-ia,P2,p’2)]’ 

n-0 

(53) 

Next, write the fields appearing in eq. (401, and the propagators also, in a 
Minkowski momentum space representation. Then, the Cutkosky rules immedi- 
ately tell us that Im I will be given in terms of products of cut graphs, the 
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individual terms coming from those shown in fig. 6. A little more explicitly, write 

I=i / 

xa4(P-k,- . . . -kt) S(k,)S(k,) ***S(k,,) 3 

with 

S(x2-ie) = Ajd4kei’“S(k). 
P-d4 

Then the Cutkosky rules give 

2ImZ= / -7r21J2(f12+pt2) 
I 

x(Z!T)~~~(P-~~-~~- . . . -k,,) [2ImS(k,)] 

x[2ImS(k,)] . ..[2ImS(k.)]. 

Thus, one can write 
P-9 

/ 
4rr 

2ImI= -- -,r2u2(p2+pt2)-ip.x 
a 

/ 
d4k 

+ (27r)4 
-ee’kx21mS(k) . 1 (57) 

The second essential point is the analysis of 2 Im S(k). To see how this works 
consider the propagator term in eq. (401, 

S,= -~/d4yd4zAOZC(Y)1T~~,(y,z)A:,(z). (58) 

Writing S, in momentum space, according to eq. (55), 

S,(k) = L/ 
2(27r)4 

d4k, 4Jk,)V,t,(k,> k - k,)&(k -k,) , (59) 

which expression is illustrated in fig. 7 Singularities in k2, giving an imaginary part 

2 2 4 k-k, 

L 2 

%p 

kl k-k, Y k 
1 2 

Fig. 7. The W-boson propagator contribution to Fig. 8. The 1 W-boson discontinuity to the 
(40). terms represented in fig. 7. 
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to S, come from real intermediate states in the k-channel. These on-shell interme- 
diate states can consist of 1 W-boson, 2 W-bosons or higher number of W-bosons. 
The 1 W-boson intermediate state corresponds to a S(k’) to Im S(k) and comes 
from the part of (59) illustrated in fig. 8 where the solid line across the k-line 
indicates the i/(k2 + ie> is replaced by 2m-ir6(k2). However, the 1 W-boson part of 
(59) is exactly cancelled by the 1 W-boson intermediate state of the fourth term on 
the right-hand side of the equation illustrated in fig. 6. S, has 2 W-boson 
intermediate states coming from kf and (k - k,)’ being put on mass-shell and 
also from two-particle states internal to UllrV. However, the singularities coming 
from these two particle states internal to n,,, are cancelled by similar terms 
coming from the last two terms on the right-hand side of the equation shown in fig. 
6. Thus, the only 2 W-boson intermediate states in S, that need be kept are given 
by 

1 
2Im’S,(k) = -/d”k12m3(kf)2+r6((k-k,)2)R;,(k,) 

2(2*)4 

where the prime indicates that we are taking a particular intermediate state, the 
2 W-boson intermediate state. Eq. (60) when used in (57) leads to (15). 

Thus, we have identified a 2 W-boson intermediate state of S, with the W-boson 
propagator correction which we have previously discussed in sect. 2. All other 
two-particle intermediate states cancel between the various contributions given in 
eq. (40). The final point to be made is that higher than two-particle intermediate 
state contributions to 2 Im S(k) contribute terms of size (p2)a(p’2)h with a + b > 4 
and so are small compared to the p2pr2(p2 + p”) contributions to W with which we 
are concerned here. In particular, R, given by (41) has a minimum of three 
particles in real intermediate states and hence is beyond the scope of our 
discussion. 

Finally, a few comments on the role of zero modes may be in order. Because of 
the existence of zero modes the vector propagator in the presence of an instanton 
is ambiguous since to any given propagator one is free to add 

=,“,b(k,,k,> = Cc,,~~)a(k,)~~“)b(k2) > 
,I 

(61) 

where n labels the particular zero mode, $ is the zero-mode wave function and the 
c,, are arbitrary. The poles of the zero modes take the form 

(62) 
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for k, small. This means that 

6l7,$( k,, k2) = - ~c,,r$?“rvpkakp 
n 

(63) 

for small k. If the 8D$ given in eq. (63) replaces the U,“f in eq. (15) it is 
straightforward to verify that the resulting contribution to W is of size (p/t)’ 
which corresponds to an energy dependence of size (E/E,)8/3 in the exponential 
as a contribution to u. When terms of this magnitude are considered it is essential 
to properly constrain the fluctuations not to be along the zero modes of the 
instanton. The valley method should be one method of accomplishing this. 

I wish to thank Valery Khoze for sending me an early copy of ref. [81 and for 
telling me of the work of ref. [14]. I also wish to thank Glennys Farrar for giving 
me a copy of ref. [13]. 
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