





# Recent developments in testable leptogenesis

Yannis Georis

Theory Seminar Nikhef November 23, 2023



- 1. Neutrino masses and type-I seesaw
- 2. Low-scale leptogenesis
- 3. Effects of flavour- and CP-symmetries
- 4. Take-home

## Open questions in the Standard Model

[Sandbox Studio, Chicago]



Origin of flavours



Hierarchy problem







Baryon asymmetry



Dark Matter

2

### **Right-handed neutrinos**



Neutrino oscillations/masses





#### Baryon asymmetry

### **Right-handed neutrinos**





.



Baryon asymmetry

### Type-I seesaw mechanism



 $u \simeq U_{\nu}^{\dagger}(\nu_L - \theta \nu_R^c) + h.c.$ Light neutrinos

 $N \simeq U_N^{\dagger}(\nu_R + \theta^t \nu_L^c) + h.c.$ Heavy neutrinos (HNL)

 $\cdot n \ge 2$  HNL generations needed to explain light neutrino masses

### Type-I seesaw mechanism



 $u \simeq U_{\nu}^{\dagger}(\nu_L - \theta \nu_R^c) + h.c.$ Light neutrinos

 $N \simeq U_N^{\dagger}(\nu_R + \theta^t \nu_L^c) + h.c.$ Heavy neutrinos (HNL)

- $\cdot n \ge 2$  HNL generations needed to explain light neutrino masses
  - What is our prior on *n* ?

n = 2: Minimality ( $\nu$ MSM)

n = 3: Flavour symmetries, gauge extensions,... (LRSM,...)

### Type-I seesaw mechanism



 $u \simeq U_{\nu}^{\dagger}(\nu_L - \theta \nu_R^c) + \text{h.c.}$ Light neutrinos



- $\cdot n \ge 2$  HNL generations needed to explain light neutrino masses
- · Experimental sensitivity expressed in terms of

$$U_{\alpha}^{2} = \sum_{i} |\theta_{\alpha i}|^{2} = \sum_{i} |\mathbf{v}(\mathbf{Y} \cdot \mathbf{M}_{M}^{-1})_{\alpha i}|^{2}$$

### Testing the type-I seesaw

Many different ways to probe HNLs:



[Bose et al; 2209.13128]

Meson decays W/Z decays Virtual W/Z exchange

### Testing the type-I seesaw

Many different ways to probe HNLs:



<sup>[</sup>Bose et al; 2209.13128]

Meson decays W/Z decays Virtual W/Z exchange

### How to reach large coupling ? B-L approximate symmetry

Naive seesaw bound

$$m_{\nu} = -v^2 (\mathbf{Y} \cdot \mathbf{M}_{\mathbf{M}}^{-1} \cdot \mathbf{Y}^t) \Leftrightarrow U_i^2 \sim \frac{m_{\nu}}{M_i} \sim 10^{-10} \frac{\text{GeV}}{M_i}$$

# How to reach large coupling ? B-L approximate symmetry

#### Naive seesaw bound

$$m_{\nu} = -v^2 \left( \mathbf{Y} \cdot \mathbf{M}_{\mathbf{M}}^{-1} \cdot \mathbf{Y}^{\mathsf{t}} \right) \Leftrightarrow U_i^2 \sim \frac{m_{\nu}}{M_i} \sim 10^{-10} \frac{\mathrm{GeV}}{M_i}$$

#### B-L approximate symmetry



Technically natural: Small  $m_{\nu}$  from small symmetry breaking parameters  $\mu, \epsilon, \epsilon' \ll 1$ Consistent with large  $U^2$ .

# How to reach large coupling ? B-L approximate symmetry

#### Naive seesaw bound

$$m_{\nu} = -\mathbf{v}^{2} \left( \mathbf{Y} \cdot \mathbf{M}_{M}^{-1} \cdot \mathbf{Y}^{t} \right) \Leftrightarrow U_{i}^{2} \sim \frac{m_{\nu}}{M_{i}} \sim 10^{-10} \frac{\text{GeV}}{M_{i}}$$

#### B-L approximate symmetry



Technically natural: Small  $m_{\nu}$  from small symmetry breaking parameters  $\mu, \epsilon, \epsilon' \ll 1$ Consistent with large  $U^2$ .

# Flavour triangle



[Drewes/Hajer/Klaric/Lafranchi; 1801.04207]

- Branching ratios constrained for n = 2: Can test HNLs as origin of  $\nu$  masses.
- For  $m_0 \neq 0$  (only possible for n = 3), almost all flavour ratios are allowed.

# Flavour triangle



[Chrzaszcz et al; 1908.02302]

- $\cdot\,$  Branching ratios constrained for n= 2: Can test HNLs as origin of  $\nu\,$  masses.
- For  $m_0 \neq 0$  (only possible for n = 3), almost all flavour ratios are allowed.

# Low-scale leptogenesis

Sakharov conditions:

\* C- and CP-violation

\* Deviation from thermal equilibrium

★ Baryon number violation

Sakharov conditions:

- \* C- and CP-violation
- $\cdot\,$  HNL oscillations and decay
- \* Deviation from thermal equilibrium
- Freeze-in and freeze-out of the HNL
- ★ Baryon number violation

Sakharov conditions:

- \* C- and CP-violation
- · HNL oscillations and decay
- Deviation from thermal equilibrium
- Freeze-in and freeze-out of the HNL





[Klarič/Shaposhnikov/Timiryasov, 2103.16545]

Sakharov conditions:

- \* C- and CP-violation
- HNL oscillations and decay
- Deviation from thermal equilibrium
- Freeze-in and freeze-out of the HNL





[Klarič/Shaposhnikov/Timiryasov, 2103.16545]

Sakharov conditions:

- \* C- and CP-violation
- HNL oscillations and decay
- Deviation from thermal equilibrium
- Freeze-in and freeze-out of the HNL
- ★ Baryon number violation
- · Sphaleron process

Efficient for 130 GeV  $~\lesssim T \lesssim 10^{12}~{\rm GeV}$ 



[Klarič/Shaposhnikov/Timiryasov, 2103.16545]



Sakharov conditions:

- \* C- and CP-violation
- HNL oscillations and decay
- Deviation from thermal equilibrium
- Freeze-in and freeze-out of the HNL



[Klarič/Shaposhnikov/Timiryasov, 2103.16545]



### Assumptions:

- \* Asymmetry generated by heavy neutrino decays
- \* Hierarchical mass spectrum  $M_1 \ll M_i$
- \* Unflavoured

# Vanilla thermal leptogenesis

### Assumptions:

- \* Asymmetry generated by heavy neutrino decays
- \* Hierarchical mass spectrum  $M_1 \ll M_i$
- \* Unflavoured

### **Boltzmann equations**

$$\frac{\mathrm{d}}{\mathrm{d}z}n_{1} = -\frac{\Gamma_{D}}{Hz}(n_{1} - n_{1}^{eq})$$
$$\frac{\mathrm{d}}{\mathrm{d}z}n_{B-L} = \epsilon_{1}\frac{\Gamma_{D}}{Hz}(n_{1} - n_{1}^{eq}) - \frac{\Gamma_{W}}{Hz}n_{B-L}$$



# Vanilla thermal leptogenesis

### Assumptions:

- \* Asymmetry generated by heavy neutrino decays
- \* Hierarchical mass spectrum  $M_1 \ll M_i$
- \* Unflavoured

### **Boltzmann equations**

$$\frac{\mathrm{d}}{\mathrm{d}z}n_{1} = -\frac{\Gamma_{D}}{Hz}(n_{1} - n_{1}^{eq})$$
$$\frac{\mathrm{d}}{\mathrm{d}z}n_{B-L} = \epsilon_{1}\frac{\Gamma_{D}}{Hz}(n_{1} - n_{1}^{eq}) - \frac{\Gamma_{W}}{Hz}n_{B-L}$$



• Decay asymmetry  $\epsilon_1 \equiv \frac{\Gamma_{N_1 \to \ell + \phi} - \Gamma_{N_1 \to \bar{\ell} + \phi^*}}{\Gamma_{N_1 \to \ell + \phi} + \Gamma_{N_1 \to \bar{\ell} + \phi^*}}$ 





### Assumptions:

- \* Asymmetry generated by heavy neutrino decays
- \* Hierarchical mass spectrum  $M_1 \ll M_i$
- \* Unflavoured

### **Boltzmann equations**

$$\frac{\mathrm{d}}{\mathrm{d}z}n_1 = -\frac{\Gamma_D}{Hz}(n_1 - n_1^{eq})$$
$$\frac{\mathrm{d}}{\mathrm{d}z}n_{B-L} = \epsilon_1 \frac{\Gamma_D}{Hz}(n_1 - n_1^{eq}) - \frac{\Gamma_W}{Hz}n_B.$$



• Decay asymmetry  $\epsilon_1 \equiv \frac{\Gamma_{N_1 \to \ell + \phi} - \Gamma_{N_1 \to \bar{\ell} + \phi^*}}{\Gamma_{N_1 \to \ell + \phi} + \Gamma_{N_1 \to \bar{\ell} + \phi^*}}$ 

- · For large mass splittings  $|\epsilon_1| \lesssim \frac{3}{8\pi} \frac{M_1}{v^2} \sqrt{\Delta m_{23}^2}$  leading to the

$$M_1\gtrsim 4\cdot 10^8~{
m GeV}$$

 $\hookrightarrow$  Direct detection  $\bigcirc$ 

Sakharov conditions:

- \* C- and CP-violation
- HNL oscillations and decay
- \* Deviation from thermal equilibrium
- Freeze-in and freeze-out of the HNL
- ★ Baryon number violation
- Sphaleron process

 $10^{-3}$ 



[Klariĉ/Shaposhnikov/Timiryasov, 2103.16545]



• Traditionally, 2 main mechanisms:

#### **ARS Leptogenesis**

Asymmetry produced during freeze-in from CP-violating HNL oscillations



[Drewes/Garbrecht/Gueter/Klaric; 1606.06690]



### **Resonant leptogenesis**

Resonant enhancement of CP-violation from small mass splittings



Decay asymmetry:  $\epsilon_i \simeq \frac{\mathrm{Im}(\mathbf{y}^{\dagger}\mathbf{y})_{ij}^2}{(\mathbf{y}^{\dagger}\mathbf{y})_{ii}(\mathbf{y}^{\dagger}\mathbf{y})_{jj}} \frac{(M_{N_i}^2 - M_{N_j}^2) \cdot M_{N_i} \Gamma_N}{(M_{N_i}^2 - M_{N_j}^2)^2 + M_{N_i}^2 \Gamma_N^2}$ 

• Traditionally, 2 main mechanisms:

#### **ARS Leptogenesis**

Asymmetry produced during freeze-in from CP-violating HNL oscillations



<sup>[</sup>Drewes/Garbrecht/Gueter/Klaric; 1606.06690]



### **Resonant leptogenesis**

Resonant enhancement of CP-violation from small mass splittings



• Traditionally, 2 main mechanisms:

#### **ARS Leptogenesis**

Asymmetry produced during freeze-in from CP-violating HNL oscillations



<sup>[</sup>Drewes/Garbrecht/Gueter/Klaric; 1606.06690]



### **Resonant leptogenesis**

Resonant enhancement of CP-violation from small mass splittings





#### **ARS Leptogenesis**

Asymmetry produced during freeze-in from CP-violating HNL oscillations





#### Resonant leptogenesis

Resonant enhancement of CP-violation from small mass splittings



 $\rightarrow$  Two regimes of the same mechanism ! Represented by the same set of kinetic equations (cfr. [Garbrecht; 1812.02651] for a review)

# Quantum kinetic equations

$$\mathbf{i} \frac{\mathrm{d}}{\mathrm{dt}} \rho = [\mathbf{H}, \delta \rho] - \frac{i}{2} \{\mathbf{I}, \delta \rho\} - i \sum_{a \in \{e, \mu, \tau\}} \mathbf{\tilde{f}}_{a} \frac{\mu_{a}}{T} f_{F}(1 - f_{F}),$$

$$\mathbf{i} \frac{\mathrm{d}}{\mathrm{dt}} \bar{\rho} = -[\mathbf{H}, \delta \bar{\rho}] - \frac{i}{2} \{\mathbf{I}, \delta \bar{\rho}\} + i \sum_{a \in \{e, \mu, \tau\}} \mathbf{\tilde{f}}_{a} \frac{\mu_{a}}{T} f_{F}(1 - f_{F}),$$

$$\mathbf{d}_{at} n_{\Delta a} = -\frac{2i\mu_{a}}{T} \int \frac{\mathrm{d}^{3}\vec{k}}{(2\pi)^{3}} \mathrm{Tr}[\mathbf{f}_{a}] f_{F}(1 - f_{F}) + i \int \frac{\mathrm{d}^{3}\vec{k}}{(2\pi)^{3}} \mathrm{Tr}[\mathbf{\tilde{f}}_{a}(\delta \bar{\rho} - \delta \rho)].$$
Density matrix
Effective Hamiltonian
Lepton asymmetry
Interaction rates

- · Interaction rates can be
  - \* Fermion number conserving  $\sim (Y^{\dagger}Y)T$
  - \* Fermion number violating  $\sim (Y^t Y^*) \frac{M^2}{T}$
- Refined calculation subject to intensive studies over the last years, e.g. Anisimov/Bedak/Bödeker '10, Garny/Kartavtsev/Hohenegger '11, Drewes/Garbrecht/Gueter/Klarič '16, Hernandez/Kekic/Lopez-Pavon/ Racker/Salvado '16, Laine/Ghiglieri '16 '18, Klarič/Shaposhnikov/Timiryasov '21, ...

# n = 2 ( $\nu$ MSM) parameter space

- Parameter space for freeze-in and freeze-out are connected
- Sizeable fraction of the parameter space can be tested at colliders or fixed target experiments
- Relies on flavour hierarchies to reach large U<sup>2</sup>
- IH parameter space larger than for NH for  $M \lesssim \mathcal{O}(100)$  GeV due to stronger washout



# n = 2 ( $\nu$ MSM) parameter space

- Parameter space for freeze-in and freeze-out are connected
- Sizeable fraction of the parameter space can be tested at colliders or fixed target experiments
- Relies on flavour hierarchies to reach large  $U^2$
- IH parameter space larger than for NH for  $M \lesssim \mathcal{O}(100)$  GeV due to stronger washout



[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/Klaric; 1710.03744]

### n = 3 parameter space, NH



· Can potentially produce enough HNLs to test leptogenesis !

### n = 3 parameter space, NH



· Can potentially produce enough HNLs to test leptogenesis !
# Why such large mixings ?



 $\cdot$  Large mixing angles allow late equilibration of one HNL  $U_i^2 \ll 1$ 

 $\hookrightarrow$  Late BAU production, less time for washout

#### n = 3 parameter space, NH



· Can potentially produce enough HNLs to test leptogenesis !

#### n = 3 parameter space, NH



· Can potentially produce enough HNLs to test leptogenesis !

#### n = 3 parameter space, NH



· Can potentially produce enough HNLs to test leptogenesis !

## Lepton number violation at colliders



[CMS collaboration; 1806.10905]

- · Large  $U^2$  but lepton number conserved if  $\mu, \epsilon \rightarrow 0$
- · Ratio of lepton number violating to conserving decays parametrised by



# Lepton number violation at colliders

#### Approximate B-L symmetry

$$\begin{split} M_M &= \begin{pmatrix} \bar{M}(1-\mu) & 0 \\ 0 & \bar{M}(1+\mu) \end{pmatrix}, \\ Y &= \begin{pmatrix} f_e(1+\epsilon_e) & if_e(1-\epsilon_e) \\ f_\mu(1+\epsilon_\mu) & if_\mu(1-\epsilon_\mu) \\ f_\tau(1+\epsilon_\tau) & if_\tau(1-\epsilon_\tau) \end{pmatrix} \end{split}$$

- $\cdot$  Large  $U^2$  but lepton number conserved if  $\mu,\epsilon \rightarrow 0$
- Ratio of lepton number violating to conserving decays parametrised by



# Lepton number violation at colliders



[Antusch/Hajer/Rosskopp, 2307.06208]

In practice, decoherence effects can make testability prospects even more optimistic !

# Testing leptogenesis through CLFV experiments

• HNLs also lead to charge lepton flavour violation.





- Right-handed neutrinos provide minimal solution for  $\nu$  masses + baryon asymmetry
- Parameter space largely enhanced for n = 3 due to decoupled  $3^{\rm rd}$  HNL
- Large mixing angle opens up the possibility of testing leptogenesis by combining information from colliders,  $0\nu\beta\beta$ ,  $\nu$  oscillations, ...
- · Collider testability of n = 3 scenario to be further explored

Effects of flavour and CP-symmetries

### **Right-handed neutrinos**





Baryon asymmetry



#### **Right-handed neutrinos**



#### Baryon asymmetry

• Why 3 generations in the Standard Model ?



[Sandbox Studio, Chicago]

- Why 3 generations in the Standard Model ?
- Hierarchy in the CKM matrix structure ?

$$|U_{\rm CKM}| \approx \begin{pmatrix} 0.97 & 0.22 & 0.004 \\ 0.22 & 0.99 & 0.04 \\ 0.008 & 0.04 & 1.01. \end{pmatrix}$$

- Why 3 generations in the Standard Model ?
- Hierarchy in the CKM matrix structure ?
- Hierarchy in the fermion masses ?



- Why 3 generations in the Standard Model ?
- Hierarchy in the CKM matrix structure ?
- Hierarchy in the fermion masses ?
- Why such neutrino mixing pattern ? In particular, why the PMNS matrix

$$|U_{\rm PMNS}| \approx \begin{pmatrix} 0.82 & 0.55 & 0.15 \\ 0.29 & 0.59 & 0.75 \\ 0.49 & 0.59 & 0.64. \end{pmatrix}$$

is so close to a tri-bimaximal mixing

$$U_{\rm TB} = \left( \begin{array}{ccc} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \end{array} \right)$$

- Why 3 generations in the Standard Model ?
- Hierarchy in the CKM matrix structure ?
- Hierarchy in the fermion masses ?
- Why such neutrino mixing pattern ? In particular, why the PMNS matrix

$$|U_{\rm PMNS}| \approx \begin{pmatrix} 0.82 & 0.55 & 0.15 \\ 0.29 & 0.59 & 0.75 \\ 0.49 & 0.59 & 0.64. \end{pmatrix}$$

is so close to a tri-bimaximal mixing

$$U_{\rm TB} = \left( \begin{array}{ccc} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \end{array} \right)$$

# Discrete flavour symmetries

• Discrete symmetry  $G_f$  at high scale, broken at low scale into residual symmetries  $G_l$ ,  $G_\nu \subset G_f$ .



- What group to choose ?
  - \* G<sub>f</sub> discrete subgroup of U(3) (not always necessary)
  - \* Gf non-abelian to avoid texture zero
  - \* *G*<sub>l</sub> abelian and minimal to avoid imposing too strong constraints on the charged lepton masses
  - $*~G_{
    u}$  as minimal as possible

# Discrete flavour symmetries

• Discrete symmetry  $G_f$  at high scale, broken at low scale into residual symmetries  $G_l$ ,  $G_\nu \subset G_f$ .



#### Prediction

 $U_{\mathrm{PMNS}} = \Omega(3) R_{ij}(\theta_L) K_{\nu}$  $Y = \Omega(3) R_{ij}(\theta_L) \operatorname{diag}(y_1, y_2, y_3) P_{kl}^{ij} R_{kl}(-\theta_R) \Omega(3')^{\dagger}$  · 4 qualitatively different scenarios:

Case 1), Case 2), Case 3 a) and Case 3 b.1).

 $\cdot~$  13  $\rightarrow$  6 or 7 free parameters: For Case 1),

 $\phi_s, \ \theta_R, \ M_1 \approx M_2 \approx M_3, \ m_0.$ 

- $\longrightarrow$  Better analytical understanding of the parameter space.
- · Total coupling proportional to

$$U^2 \propto rac{1}{|\cos(2 heta_R)|}, rac{1}{|\sin(2 heta_R)|}.$$

 $\hookrightarrow \theta_R \to k\frac{\pi}{4}, k \in \mathbb{Z}$  (but enhanced residual symmetry) leads to experimentally testable scenarios !

 $\cdot\,$  Can relate low- and high-scale parameters. For Case 1):

$$\sin(\delta) = 0$$
,  $|\sin(\alpha)| = |\sin(6\phi_s)|$ ,  $\sin(\beta) = 0$ .

# Ternary plots for Case 1)



[Drewes/Hagedorn/YG/Klaric; 24xx.xxxx]

- · Enhanced predictivity compared to the agnostic scenario
- Branching ratio fixed (or 2 possibilities) for fixed m<sub>0</sub>
   → Can pinpoint m<sub>0</sub> at colliders just by measuring the HNs branching ratio.
- · Other cases are slightly less predictive.

## Ternary plots for Case 3 b.1)



[Drewes/Hagedorn/YG/Klaric; 24xx.xxxx]

- · Enhanced predictivity compared to the agnostic scenario
- Branching ratio fixed (or 2 possibilities) for fixed m<sub>0</sub>
   → Can pinpoint m<sub>0</sub> at colliders just by measuring the HNs branching ratio.
- · Other cases are slightly less predictive.

# Quantum kinetic equations

$$\mathbf{i} \frac{\mathrm{d}}{\mathrm{dt}} \boldsymbol{\rho} = [\mathbf{H}, \delta \boldsymbol{\rho}] - \frac{i}{2} \{\mathbf{\Gamma}, \delta \boldsymbol{\rho}\} - i \sum_{a \in \{e, \mu, \tau\}} \mathbf{\tilde{f}}_{a} \frac{\mu_{a}}{T} f_{F}(1 - f_{F}),$$

$$\mathbf{i} \frac{\mathrm{d}}{\mathrm{dt}} \mathbf{\tilde{\rho}} = -[\mathbf{H}, \delta \mathbf{\tilde{\rho}}] - \frac{i}{2} \{\mathbf{\Gamma}, \delta \mathbf{\tilde{\rho}}\} + i \sum_{a \in \{e, \mu, \tau\}} \mathbf{\tilde{f}}_{a} \frac{\mu_{a}}{T} f_{F}(1 - f_{F}),$$
Source term
$$\frac{\mathrm{d}}{\mathrm{dt}} n_{\Delta_{a}} = -\frac{2i\mu_{a}}{T} \int \frac{\mathrm{d}^{3} \vec{k}}{(2\pi)^{3}} \operatorname{Tr}[\mathbf{\tilde{f}}_{a}] f_{F}(1 - f_{F}) + i \int \frac{\mathrm{d}^{3} \vec{k}}{(2\pi)^{3}} \operatorname{Tr}[\mathbf{\tilde{f}}_{a}(\delta \mathbf{\tilde{\rho}} - \delta \boldsymbol{\rho}]].$$
Density matrix
Effective Hamiltonian
Lepton asymmetry
Interaction rates

- · Interaction rates can be
  - \* Fermion number conserving  $\sim (Y^{\dagger}Y)T$
  - \* Fermion number violating  $\sim (Y^t Y^*) \frac{M^2}{T}$
- Refined calculation subject to intensive studies over the last years, e.g. Anisimov/Bedak/Bödeker '10, Garny/Kartavtsev/Hohenegger '11, Drewes/Garbrecht/Gueter/Klarič '16, Hernandez/Kekic/Lopez-Pavon/ Racker/Salvado '16, Laine/Ghiglieri '16 '18, Klarič/Shaposhnikov/Timiryasov '21, ...

· Perturbatively,

$$Y_{B} \propto \mathrm{Tr}\left(\tilde{\Gamma}_{\alpha} \left(\delta 
ho - \delta \bar{
ho}
ight)
ight) \propto \mathrm{Tr}\left(\tilde{\Gamma}_{\alpha} \left[H_{N}, \Gamma
ight]
ight)$$

 $H_N = \frac{M_M^2}{2E} + h_+(T)Y^{\dagger}Y + h_-(T)Y^{t}Y^*, \ \Gamma, \tilde{\Gamma} = \pm \gamma_+(T)Y^{\dagger}Y + \gamma_-(T)Y^{t}Y^*$ 

· BAU production governed by

$$\begin{split} C_{\mathrm{LFV},\alpha} &= i \operatorname{Tr} \left( \begin{bmatrix} M_{M}^{2}, Y^{\dagger} Y \end{bmatrix} Y^{\dagger} P_{\alpha} Y \right), \\ C_{\mathrm{LNV},\alpha} &= i \operatorname{Tr} \left( \begin{bmatrix} M_{M}^{2}, Y^{\dagger} Y \end{bmatrix} Y^{T} P_{\alpha} Y^{*} \right), \\ C_{\mathrm{DEG},\alpha} &= i \operatorname{Tr} \left( \begin{bmatrix} Y^{T} Y^{*}, Y^{\dagger} Y \end{bmatrix} Y^{T} P_{\alpha} Y^{*} \right). \end{split}$$

· Perturbatively,

$$Y_B \propto \mathrm{Tr}\left(\tilde{\Gamma}_{\alpha} \left(\delta 
ho - \delta \bar{
ho}
ight)\right) \propto \mathrm{Tr}\left(\tilde{\Gamma}_{\alpha} \left[H_N, \Gamma
ight]\right)$$

 $H_N = \frac{M_M^2}{2E} + h_+(T)Y^{\dagger}Y + h_-(T)Y^{t}Y^*, \quad \Gamma, \tilde{\Gamma} = \pm \gamma_+(T)Y^{\dagger}Y + \gamma_-(T)Y^{t}Y^*$ 

· BAU production governed by

Flavour violating only 
$$C_{LFV,\alpha} = i \operatorname{Tr} \left( \begin{bmatrix} M_{M}^{2}, Y^{\dagger} Y \end{bmatrix} Y^{\dagger} P_{\alpha} Y \right),$$
  
 $\sum_{\alpha} C_{LFV,\alpha} = 0$   $C_{LNV,\alpha} = i \operatorname{Tr} \left( \begin{bmatrix} M_{M}^{2}, Y^{\dagger} Y \end{bmatrix} Y^{T} P_{\alpha} Y^{*} \right),$   
 $C_{DEG,\alpha} = i \operatorname{Tr} \left( \begin{bmatrix} Y^{T} Y^{*}, Y^{\dagger} Y \end{bmatrix} Y^{T} P_{\alpha} Y^{*} \right),$   
Flavour violating only, can be  $\neq 0$  for  $\Delta M = 0$   
Violates lepton number  
 $\sum_{\alpha} C_{LNV,\alpha} \neq 0$ 

· Perturbatively,

$$Y_{B} \propto \mathrm{Tr}\left(\tilde{\Gamma}_{\alpha}\left(\delta 
ho - \delta \bar{
ho}
ight)
ight) \propto \mathrm{Tr}\left(\tilde{\Gamma}_{\alpha}\left[H_{N}, \Gamma
ight]
ight)$$

 $H_N = \frac{M_M^2}{2E} + h_+(T)Y^{\dagger}Y + h_-(T)Y^{t}Y^*, \quad \Gamma, \tilde{\Gamma} = \pm \gamma_+(T)Y^{\dagger}Y + \gamma_-(T)Y^{t}Y^*$ · For Case 1,

$$\begin{split} C_{\rm LFV,\alpha} &\sim \frac{8}{3} M^2 \,\kappa \, y_2 y_3 \left( y_2^2 - y_3^2 \right) \,\sin\theta_{L,\alpha} \,\sin\theta_R \,\cos 3\,\phi_{\rm S}, \\ C_{\rm LNV,\alpha} &\sim \frac{8}{3} M^2 \kappa y_2 y_3 \left( y_3^2 \cos(2\theta_R) - y_2^2 \right) \sin\theta_{L,\alpha} \,\sin\theta_R \,\cos 3\,\phi_{\rm S}, \\ C_{\rm DEG,\alpha} &= 0, \end{split}$$

where

$$\theta_{L,\alpha} = \theta_L + \rho_\alpha \, \frac{4 \, \pi}{3}$$
 with  $\rho_e = 0, \ \rho_\mu = +1, \ \rho_\tau = -1$ .

· Perturbatively,

$$Y_{B} \propto \mathrm{Tr}\left(\tilde{\Gamma}_{\alpha}\left(\delta 
ho - \delta \bar{
ho}
ight)
ight) \propto \mathrm{Tr}\left(\tilde{\Gamma}_{\alpha}\left[H_{N}, \Gamma
ight]
ight)$$

 $H_N = \frac{M_M^2}{2E} + h_+(T)Y^{\dagger}Y + h_-(T)Y^{t}Y^*, \quad \Gamma, \tilde{\Gamma} = \pm \gamma_+(T)Y^{\dagger}Y + \gamma_-(T)Y^{t}Y^*$ · For Case 1.

$$\begin{split} C_{\rm LFV,\alpha} &\sim \frac{8}{3} M^2 \,\kappa \, y_2 y_3 \left( y_2^2 - y_3^2 \right) \,\sin\theta_{L,\alpha} \,\sin\theta_R \,\cos 3\,\phi_{\rm s}, \\ C_{\rm LNV,\alpha} &\sim \frac{8}{3} M^2 \kappa y_2 y_3 \left( y_3^2 \cos(2\theta_R) - y_2^2 \right) \sin\theta_{L,\alpha} \,\sin\theta_R \,\cos 3\,\phi_{\rm s}, \\ C_{\rm DEG,\alpha} &= 0, \end{split}$$

where

$$\theta_{L,\alpha} = \theta_L + \rho_\alpha \frac{4\pi}{3}$$
 with  $\rho_e = 0, \ \rho_\mu = +1, \ \rho_\tau = -1$ .

#### Case 1, BAU vs $\phi_{\rm s}$



**Figure 1:** Vanishing initial conditions,  $\lambda = 0$ 

[Drewes/Hagedorn/YG/Klaric; 2203.08538]

· Correlation between Y<sub>B</sub> and low-energy observables. Here,

$$\sin(\alpha) = \sin(6\pi \frac{s}{n}).$$

# Leptogenesis with flavour symmetries



[Drewes/YG/Hagedorn/Klaric; 24xx.xxxxx]

· Reduced parameter space but remains testable

# Leptogenesis with flavour symmetries



[Drewes/YG/Hagedorn/Klaric; 24xx.xxxxx]

· Reduced parameter space but remains testable

# Leptogenesis in the mass degenerate case



[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/Klarič; 1710.03744] See also [Sandner/Hernandez/Lopez-Pavon/Rius; 2305.14427]

• Leptogenesis possible for  $\Delta M = 0$  thanks to Higgs and thermal mass splittings

 $\Delta M_{\rm phys} \sim h_+(T) Y^\dagger Y + h_-(T) Y^t Y^*$ 

· Lepton asymmetry proportional to CP-violating combination  $\operatorname{Tr}\left(\tilde{\Gamma}_{\alpha}\left[H_{N},\Gamma\right]\right) \sim \operatorname{Tr}\left(\left[\hat{Y}^{t}\,\hat{Y}^{*},\hat{Y}^{\dagger}\,\hat{Y}\right]\,\hat{Y}^{t}\,P_{\alpha}\,\hat{Y}^{*}\right) \neq 0!$ 

# Flavour symmetries and degenerate leptogenesis



· For Case 3 b.1),  $C_{\text{DEG},\alpha} \neq 0$  ! Leptogenesis viable for  $\Delta M_M = 0$ .

# What should I take home ?

- Right-handed neutrinos provide minimal solution for  $\nu$  masses + baryon asymmetry
- · Leptogenesis parameter space largely enhanced for n = 3
- Large mixing angle opens up the possibility of testing leptogenesis by combining information from colliders,  $0\nu\beta\beta$ ,  $\nu$  oscillations, ...
- Combined with flavour symmetric explanation of PMNS: very predictive !
- Degenerate leptogenesis possible due to Higgs and thermal effects
- $\cdot$  Collider testability of n = 3 scenario to be further explored

Thanks for your attention!

# Appendix

#### n = 3 parameter space, IO



· Similar enhancement of the parameter space for IO.

# Impact of low energy measurements on $\frac{U^2}{U^2}$



#### Current $\nu$ oscillation data

DUNE projections

- New (more realistic) benchmarks proposed beyond the 1-flavour approximation
- DUNE measurement of  $\delta$  could constrain the mixing to each SM flavour, hence leptogenesis
### Seesaw parameter space

Consistency with  $\nu$ -oscillation data induced by Casas-Ibarra parametrisation

$$F = \frac{i}{v} U_{\nu} \sqrt{m_{\nu}^{diag}} R \sqrt{M_{M}}$$

Seesaw relation:  $m_{\nu} = -v^2 F \cdot M_M^{-1} \cdot F^t$ .

Consistency with  $\nu$ -oscillation data induced by Casas-Ibarra parametrisation

$$F = \frac{i}{v} U_{\nu} \sqrt{m_{\nu}^{diag}} R \sqrt{M_{M}}$$

## R is a complex rotation matrix



13 free parameters

Consistency with  $\nu\text{-}oscillation$  data induced by Casas-Ibarra parametrisation

$$F = \frac{i}{v} U_{\nu} \sqrt{m_{\nu}^{diag}} R \sqrt{M_{M}}$$

#### n=2

2 CP-violating phases
3 PMNS angles (fixed)
2 light neutrino masses (fixed)
1 complex Euler angle
2 Majorana masses

6 free parameters

# 3 CP-violating phases 3 PMNS angles (fixed) 3 light neutrino masses (2 fixed) 3 complex Euler angles 3 Majorana masses

n=3

### 13 free parameters

### Thermal vs vanishing initial conditions



At large  $\bar{M}$ , parameter space for thermal I.C. is larger because asymmetry produced during freeze-in and freeze-out have opposite signs.