

QUANTUM CHEMISTRY AND EDMS NIKHEF WORKSHOP: THEORY MEETS EXPERIMENT

Lukáš F. Pašteka

Intro

Why bother with theory?

- experiments are challenging and expensive
- small amounts of unstable, short-lived elements
- unprecedented sensitivity needed to detect the tiny effects of new physics
- special precautions are required (hazardous materials)
- practical considerations do not apply to theory
- alongside specially developed experimental techniques, theoretical support becomes crucial

		b 6	10 B	-
		- 6		
				and the second
			< 🖻 🔁	
				Mester
	<u> </u>			
		E Barris		1111000
E E IS ES ES	(
	6			-
	United and		1 1	
	A state			
	Usi - State			Artistee of
		P Brannet	ale.	
		I Barrison Contraction		and the second
		Contraction of the second s		Contraction of
				Constant of
9	S Same			Start .

Where does theory fit?

- Identification of promising candidates for precision measurements
 - practical considerations (stability, laser-coolability, etc.)
 - high sensitivity to desired effect

HFS

 $B = eO_{ca}$

• Reliable predictions for planning the experiment

• Extraction of data from measurements

Computational methods a general idea

Computational methods

Computational methods

- systematic increase of accuracy and cost
- starting point is the cheapest still ab inito method
- computation is a balancing act

Computational methods

The right tool for the job

- Coupling parameters of P(T)-violating phenomena, variation of fundamental constants, ...
 - relativistic in nature \rightarrow relativistic methods
- Atomic and molecular parameters needed in experiments
 - heavy systems \rightarrow relativistic methods
- High accuracy
 - state-of-the-art treatment of correlation + large basis sets
- Uncertainty estimates
 - robust and systematic methodology

Golden standard

- 4c Dirac-Coulomb Hamiltonian
- large flexible correlation-consistent basis sets
 - CBS extrapolation

- highly accurate
- size-consistent
- costly atoms & small molecules
- CCSD(T) single reference CC
 closed-shell systems / systems with one
 dominant configuration (e.g. BaF, X²Σ)
- FSCC multireference Fock-space CC

open-shell systems / spectrum of excited states / bond dissociation

SE+VP

DCE

What can we calculate

- Atomic properties
 - energies, IPs, EAs, spectra, HFS parameters, polarizabilities, ...
- Molecular properties
 - geometries, spectroscopic constants, laser cooling schemes, ...
- Properties for interpretation of precision measurements:
 - W_d, Ws (eEDM experiments)
 - W_A (NSD-PV, nuclear anapole moments)
 - W_M (NMQ moments)
 - E_{PV} (parity-violating energy shifts)
 - sensitivity to a-variation
- Expected accuracy
 - ~ 10 meV for energies, ~ 5 % for properties
 - can do better

Systematic improvement and uncertainty evaluation

Uncertainty estimation

- Calculate the same property in a lighter homologue (and compare to experiment)
- Calculate a different property in the same atom/molecule (and compare to experiment)
- Perform a computational investigation to assign uncertainties based on method incompleteness

Uncertainty estimation 2.35 experiment 2.40 2.30 elativity SE+VP experiment 2.20 2.25 DCB EA (eV) 2.33 2.00 2.35 EA (eV) Ň 2.20 2.32 DC 2.33 1.80 exp... 2.31 2.31 2.15 exp... X2C 2.29 1.60 2.30 2.27 SR 2.29 2.10 1.40 2.25 δΤ δ(Q) δQ δ(P) δΡ δ(Τ) ECP SR SO Breit SE+VP NR 1.20 NR-HF/MB 2.05 NR SR SO Breit SE+VP CCSD δ(T) δΤ δ(Q) δQ δ(P) δΡ DZ DFT ΤZ MP2 Electron correlation QZ aug-QZ BOSISSET CBS

Uncertainty estimation – IP/EA of Rn/Og

In service to NL-eEDM

Selected applications

- BaF (and friends)
 - coupling constants
 - laser cooling
 - IPs
- Polyatomic molecules
 - BaCH₃
 - YbCH₃
 - BaOH

Anastasia Borschevsky

P,T-odd properties

 \mathcal{P}, \mathcal{T} -odd scalar pseudoscalar (S-PS) neutral-current electron-nucleon interaction constant

Kriplovich, Nauka (1981), English trans. G&B (1991) Kozlov, Zh. Eksp. Teor. Fiz. 89, 1933 (1985) Dimitriev et al, Phys. Lett. A 167, 280 (1992)

$$W_{d}/W_{s} \text{ parameters}$$

$$H_{sr}^{\mathcal{P},\mathcal{T}-\text{odd}} = (W_{s}k_{s} + W_{d}d_{e}) \Omega$$

$$W_{s} = \frac{1}{\Omega k_{s}} \langle \Psi^{(0)} | H^{s-\text{PS}} | \Psi^{(0)} \rangle$$

$$W_{d} = \frac{1}{\Omega d_{e}} \langle \Psi^{(0)} | H^{\text{eEDM}} | \Psi^{(0)} \rangle$$

$$H^{s-\text{PS}} = \frac{iG_{F}k_{s}}{e\sqrt{2}} \sum_{i,k} \rho_{k}(\mathbf{r}_{i})\gamma^{0}\gamma^{5}$$

$$H^{\text{eEDM}} = -d_{e} \sum_{i} \gamma^{0} \Sigma \cdot \mathbf{E}(\mathbf{r}_{i})$$

$$W_{s(d)} = \frac{1}{\Omega} \frac{dE(\lambda_{k_{s}(d_{e})})}{d\lambda_{k_{s}(d_{e})}} \Big|_{\lambda_{k_{s}(d_{e})}=0}$$

$$E(\lambda_{p}) = \langle 0 | H_{0} + \lambda_{p} H_{p} | 0 \rangle$$

- Use relativistic CC to calculate W_d and W_s .
- Systematically improve the calculation up to convergence
- Perform an extensive computational study to estimate uncertainties

BaF: W_d/W_s parameters

- Use relativistic CCSD(T) to calculate W_d and W_s in BaF
- Systematically improve the calculation up to convergence
- Estimate uncertainties

Source	Estimation scheme	δW_d	δW_s
Basis set			
Quality	(vqz - vtz)/2	0.012	0.005
Diffuse funct.	s-aug-vqz - vqz	0.002	0.031
Tight funct. $l \leq 2$	(s, p, d)	0.009	0.033
Tight funct. $l \geq 3$	aeqz - cvqz	0.004	0.021
Correlation			
Virtual space cut-off	6000 a.u - 2000 a.u.	0.014	0.011
Higher excitations	$(CCSD-T - CCSD+T) \cdot 2$	0.027	0.084
Relativity			
Breit+QED	$(DC+\Delta G - DC)\cdot 2$	0.113	0.064
Geometry			
R uncertainty	$R - (R - \delta R)$ (aetz)	0.011	0.029
Vibrational effects	$R_e - v_0$ (aetz)	0.001	0.013
Total			
sum	$\sqrt{\Sigma_i \delta_i^2}$	0.119	0.122
%		3.79	1.47

BaF: W_d/W_s parameters

Final recommended values

BaF	$W_d^* \left[\frac{10^{24} \text{Hz}}{\text{e cm}} \right] \qquad W_s \text{ [Hz]}$
DC CCSD(T)	$3.13 \pm 0.24 8.29 \pm 0.12$

Pi Haase

Haase et al., J. Chem. Phys. 155, 034309 (2021)

Uncertainty estimation

- Calculate the same property in a lighter homologue (and compare to experiment)
- Calculate a different property in the same atom/molecule (and compare to experiment)

BaF: Magnetic HFS constants

• A proxy property for W_d/W_s parameters

BaF	$W_d^* \left[\frac{10^{24} \text{Hz}}{\text{e cm}} \right] \qquad W_s \text{ [Hz]}$
DC CCSD(T)	$3.13 \pm 0.24 8.29 \pm 0.12$

Table 8. A_{\parallel} and A_{\perp} of ¹³⁷Ba in BaF (MHz)

	¹³⁷ BaF			
method	A _{II}	%(exp)	A_{\perp}	%(exp)
GRECP SCF-EO ⁹⁰	2264	-4.71	2186	-5.00
GRECP RASSCF-EO ⁹⁰	2272	-4.38	2200	-4.39
DF RASCI ⁹¹	2240	-5.72	2144	-6.82
DF MBPT ⁹¹	2314	-2.61	2254	-2.04
DC CCSD (this work)	2383(129)	0.29	2305(132)	0.17
exp	2376(12)		2301(9)	

Theoretical uncertainty estimation basis set 120 higher excitations virtual cut-off 100 Breit δ [MHz] OED 80 Bohr-Weisskopf 60 CCSD exp 137BaF 40 A1 2383 2376 A₁ 2305 2301 20 133Cs 0 A 2283 2298 ¹³⁷BaF A_I ¹³⁷BaF A_⊥ 133Cs A

Haase et al., J. Phys. Chem. A 124, 3157 (2020)

MF cooling schemes

Yongliang Hao

Hao et al., J. Chem. Phys. 151, 034302 (2019)

Ionization potentials of MF

- Excellent agreement for CaF and BaF
- For SrF, new IP measurements would be useful

Aleksandra Kuyberis

TABLE VI: Recommended theoretical IP of MF (M = Ca, Sr, Ba) [eV] with uncertainties.

IP	CaF	SrF	BaF
Adiabatic	5.821(3)	5.415(1)	4.800(3)
Adiabatic+ZPE	5.828(3)	5.420(1)	4.804(3)
$Experiment^a$	5.8270(6)	5.36 - 5.62	4.80377(1)
		201	

^a-CaF[69], SrF[70] and BaF[39]

Kyuberis et al., Phys. Rev. A asap (2024)

Uncertainty estimation

- Calculate the same property in a lighter homologue (and compare to experiment)
- Calculate a different property in the same atom/molecule (and compare to experiment)
- Perform a computational investigation to assign uncertainties based on method incompleteness

Ionization potential of RaF

- a promising candidate for precision measurements
- Many (high-impact) experimental studies
- Spectra, isotope shifts
- New measurements: IP
- Theory before experiment

87."Precision spectroscopy and laser cooling scheme of a radium-containing molecule". S.M. Udrescu, S. Wilkins, A. Breier, M. Athanasakis-Kaklamanakis, R.F. Garcia Ruiz et a <u>Nature Physics (2023).</u>

Featured in Physics

Editors' Suggestion

Open Access

Isotope Shifts of Radium Monofluoride Molecules

S. M. Udrescu *et al.* Phys. Rev. Lett. **127**, 033001 – Published 14 July 2021

nature

Explore content V About the journal V Publish with us V

<u>nature</u> > <u>articles</u> > article

Article Open access Published: 27 May 2020

Spectroscopy of short-lived radioactive molecules

R. F. Garcia Ruiz [™], <u>R. Berger</u> [™], <u>J. Billowes</u>, <u>C. L. Binnersley</u>, <u>M. L. Bissell</u>, <u>A. A. Breier</u>, <u>A. J. Brinson</u>, <u>K.</u> Chrysalidis, <u>T. E. Cocolios</u>, <u>B. S. Cooper</u>, <u>K. T. Flanagan</u>, <u>T. F. Giesen</u>, <u>R. P. de Groote</u>, <u>S. Franchoo</u>, <u>F. P.</u> Gustafsson, <u>T. A. Isaev</u>, <u>Á. Koszorús</u>, <u>G. Neyens</u>, <u>H. A. Perrett</u>, <u>C. M. Ricketts</u>, <u>S. Rothe</u>, <u>L. Schweikhard</u>, <u>A. R.</u> Vernon, <u>K. D. A. Wendt</u>, ... <u>X. F. Yang</u> + Show authors

Ionization potential of RaF

- Measurement
 - ionization threshold under multi-step laser excitation
 - both two-step and three-step ionization schemes.

Theory

relativistic CC with higher order corrections

Method	IP (eV)
CBS-DC-CCSD	4.932
CBS-DC-CCSD(T)	4.983
+aug+ae.vs.cv	4.986
$+\Delta T$	4.987
+Breit	4.985
+QED	4.979
Theoretical	4.979(9)
Experimental	4.972(4)

FIG. 1. a) The two-step and three-step ionization schemes used in the experiments. Power-normalized, background-subtracted ion count rate as a function of total photon energy in 226 Ra¹⁹F for the b) two-step scheme and c) three-step scheme. The determined IPs are shown as vertical dashed-and-dotted lines with their 1 σ uncertainties as gray bands.

Wilkins et al., in prep. (2024)

Ionization potential of RaF

- Measurement
 - ionization threshold under multi-step laser excitation
 - both two-step and three-step ionization schemes.

Theory

relativistic CC with higher order corrections

Wilkins et al., in prep. (2024)

Symmetric top molecules

- \bullet BaCH_3 and YbCH_3
- long-lived close-lying opposite parity eigenstates (K-doublets)
- expected to be laser-coolable
- similar W_d/W_s parameters to other Ba/Yb containing molecules

Symmetric top molecules

• BaCH₃ and YbCH₃

Yuly Chamorro

Molecule	Method	$W_{\rm d}~(10^{24} \frac{h{ m Hz}}{e{ m cm}})$	W _s (hkHz)
BaCH ₃	DC- $CCSD(T)$	3.22 ± 0.12	8.42 ± 0.29
BaOCH ₃	X2C-CCSD(T)	3.05 [74]	
BaOH	DC-CCSD(T)	3.10 ± 0.15 [38]	
	ZORA-cGHF	3.32 ± 0.33 [39]	8.79 ± 0.88 [39]
	ZORA-cGKS	2.98 ± 0.30 [39]	7.91 ± 0.79 [39]
BaF	DC-CCSD(T)	3.13 ± 0.12 [37]	8.29 ± 0.12 [37]
YbCH ₃	DC-FSCC(0,1)	13.80 ± 0.35	50.16 ± 1.27
YbOCH ₃	X2C-CCSD(T)	11.60 [74]	
YbOH	DC-FSCC(0,1)	11.30 ± 0.5 [38]	
	ZORA-cHFS	11.40 ± 1.14 [39]	41.2 ± 4.12 [39]
	ZORA-cGKS	8.54 ± 0.85 [39]	30.8 ± 3.08 [39]
	DC-CCSD	11.47 ± 0.68 [75]	
YbF	DC-FSCC	11.39 [37]	

Bonding effects

Bonding effects

smaller charge on Yb

 less polar = more covalent

Bonding effects

- smaller charge on Yb
 ↓
 less polar = more covalent
- V/G at BCP
 - measure of covalent character
 - <1 ionic, 1-2 polar, >2 covalent
- downside laser coolability

Z scaling

- W_d scales with the atomic number Z^3

as predicted

Bouchiat et Bouchiat, J. Phys. France 35, 899 (1974)

BaOH – work in progress

bending mode lifetimecooling scheme

Radoslava Hlavacova

 polarizability and scattering tensors

Eifion Prinsen

(this is fake news – actually SrOH)

