Hadron colliders: FCC-hh

22.03.2024 Nikhef Topical Lectures "Future Colliders" Birgit Stapf

- FCC-hh: Hadron collider phase of the FCC integrated programme
 - *pp*-collisions at 100 TeV (nominal)
 - Studies with 80 TeV or 120 TeV ongoing

DESY. CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Page 2

- FCC-hh: Hadron collider phase of the FCC integrated programme
- FCC feasibility study is ongoing now 2025
 - Midterm review recently concluded (<u>status report</u>)

"There is no technical showstopper identified so far, but still a lot of work to be done to achieve greater accuracy and depth technical details, on geology or on the projected cost for instance." - <u>Official FCC webpage</u>

"Financial Committee underlines the need to make the project attractive from the physics viewpoint and takes the view that it would be unfortunate to sacrifice the attractiveness of the physics for the sake of reducing costs."

From C. Grojean

- FCC-hh: Hadron collider phase of the FCC integrated programme
- FCC feasibility study is ongoing now 2025
- FCC-hh is *far in the future* but need foundations *now*

🚆 Universität Hamburg

- FCC-hh: Hadron collider phase of the FCC integrated programme
- FCC feasibility study is ongoing now 2025
- FCC-hh is far in the future but need foundations now
- <u>Conceptual Design Report</u> from 2019
 - Collider design key parameters, reference detector and physics potential

```
353 pages

Eur. Phys. J. Special Topics 228, 755–1107 (2019)

© The Author(s) 2019

https://doi.org/10.1140/epjst/e2019-900087-0

Regular Article

FCC-hh: The Hadron Collider
```

Future Circular Collider Conceptual Design Report Volume 3

Parameter	(HL)-LHC	FCC-hh	
E _{CM}	14 TeV	100 TeV	Factor 7
Peak inst. lumi.	(1 - 5) x 10 ³⁴ cm ⁻² s ⁻¹	(5 - 30) x 10 ³⁴ cm ⁻² s ⁻¹	Factor 6

Parameter	(HL)-LHC	FCC-hh	
E _{CM}	14 TeV	100 TeV	Factor 7
Peak inst. lumi.	(1 - 5) x 10 ³⁴ cm ⁻² s ⁻¹	(5 - 30) x 10 ³⁴ cm ⁻² s ⁻¹	

Parameter	(HL)-LHC	FCC-hh
E _{CM}	14 TeV	100 TeV
Peak inst. lumi.	(1 - 5) x 10 ³⁴ cm ⁻² s ⁻¹	(5 - 30) x 10 ³⁴ cm ⁻² s ⁻¹
Circumference	26.7 km	90.7 km
Dipole field strength	8.33 T	~ 16 T

Energy increase achieved by larger circumference and higher *B*-field

 \circ $E_{b} [GeV] = 0.3 (B \rho) [Tm]$

H Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Development of the magnets is one of the major challenges, and a big R&D effort \rightarrow Details from Ewen in yesterday's lecture

Parameter	(HL)-LHC	FCC-hh
E _{CM}	14 TeV	100 TeV
Peak inst. lumi.	(1 - 5) x 10 ³⁴ cm ⁻² s ⁻¹	(5 - 30) x 10 ³⁴ cm ⁻² s ⁻¹
Circumference	26.7 km	90.7 km
Dipole field strength	8.33 T	~ 16 T
Goal int. lumi.	3 ab ⁻¹	30 ab ⁻¹

 Total of >= 30 ab⁻¹ during operation time of 25 years, with similar "scheduling" as LHC, i.e. split between (two) experiments, with planned "upgrade" phases

Parameter	(HL)-LHC	FCC-hh
E _{CM}	14 TeV	100 TeV
Peak inst. lumi.	(1 - 5) x 10 ³⁴ cm ⁻² s ⁻¹	(5 - 30) x 10 ³⁴ cm ⁻² s ⁻¹
Circumference	26.7 km	90.7 km
Dipole field strength	8.33 T	~ 16 T
Goal int. lumi.	3 ab ⁻¹	30 ab ⁻¹
Events/crossing	O(10-100)	Max. 1000

<µ> = 200

DESY.

Collider design: Key parameters

Parameter	(HL)-LHC	FCC-hh		
E _{CM}	14 TeV	100 TeV		
Peak inst. lumi.	(1 - 5) x 10 ³⁴ cm ⁻² s ⁻¹	(5 - 30) x 10 ³⁴ cm ⁻² s	-1 5	
Circumference	26.7 km	90.7 km	cooling channels	
Dipole field strength	8.33 T	~ 16 T	savtoth	
Goal int. lumi.	3 ab ⁻¹	30 ab ⁻¹	finishing	
Events/crossing	O(10-100)	Max. 1000	LASE Surface perforated baffles	
SR power loss/beam	< 0.01 MW	2.4 MW	(pumping slots)	

- Losses due to synchrotron radiation become sizeable, first at a hadron collider
 - Proportional to E^4

Experiments

- Four interaction points:
- (SM) physics more forward + boosted @ 100 TeV
 - Precision up to $|\eta| \sim 4$, VBF jets up to $|\eta| \sim 6$
 - High granularity e.g. resolve products of highly boosted tau
 - Contain multi-TeV jets
- Other challenges due to the much higher collision rates w.r.t. HL-LHC:
 - Radiation hardness
 - Pile-up
 - Huge data rates

DESY. CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

🛱 Universität Hamburg

🛱 Universität Hamburg

QUANTUM UNIVERSE

Calorimetry

- (Mostly) Inspired by ATLAS calorimetry, but further optimized
 - ECAL: LAr & Pb (Cu) 0
 - HCAL: Scintillating tiles & Ο Fe/Pb in barrel, LAr on endcaps + forward

deipnes		
Code	Blame 1614 lines (1162 loc) · 39.7 KB	2 LL
324		
325		
326	# Calorimeter	
327	******	
328	<pre>module DualReadoutCalorimeter Calorimeter {</pre>	
329	<pre>set ParticleInputArray ParticlePropagator/stableParticles</pre>	14
330	<pre>set TrackInputArray TrackMerger/tracks</pre>	100 million (1997)
331		RELEASE STATISTICS
332	<pre>set TowerOutputArray towers</pre>	ANT ANT ANT ANT ANT ANT
333	<pre>set PhotonOutputArray photons</pre>	
334		
335	<pre>set EFlowTrackOutputArray eflowTracks</pre>	
336	<pre>set EFlowPhotonOutputArray eflowPhotons</pre>	
337	<pre>set EFlowNeutralHadronOutputArray eflowNeutralHadrons</pre>	A
220		
		1-1-

<u>Calorimetry</u>

- (Mostly) Inspired by ATLAS calorimetry, but further optimized
 - ECAL: LAr & Pb (Cu)
 - HCAL: Scintillating tiles & Fe/Pb in barrel, LAr on endcaps + forward

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

Universität Hamburg

Muon systems

- <u>Proposal</u>: Combine drift tubes (sMDTs) & RPCs
- Mainly for muon identification + trigger

phes /	cards / F	CC / scenarios / muonMomentumResolution_II.tcl	
👔 selv	aggi beta	a v of Scenario II FCC-hh card 🗸	4c7a2
Code	Blame	423 lines (414 loc) · 48.7 KB	
1	#		
2	# Auto	matically generated tracker resolution formula for layout: FCChh_Option3	
3	#		
4	# nttp #	://icc-iklayoul.web.cern.cn/icc-iklayout/rccnn-uption3/rccnn_uptions_v0_Delphes_eta0.1_p.Conf	
6	# By	Z.Drasal(CERN) on: 2016-09-07.13:22:06	
7	#		
8	#		
9	# Ana	lytical formula	4
10			
11	## deg	rading by a factor 2 wrt to scenario I	
12			1.0
13	set Re	solutionFormula {	
14	2* ((a+a) = 0 (f $(a+a) = 1$) +	
15	(205 ($c(a) > - v \cos(au)(c(a)) > 1 / *$	
TO	10	$art(1e-5/sin(2*atan(exn(-abs(eta))))^2 + ($	
17		references and the second se	

Muon systems

- <u>Proposal</u>: Combine drift tubes (sMDTs) & RPCs
- Mainly for muon identification + trigger

Universität Hamburg

DER EDRECHTING I DER TEMPE I DER OTDI

Physics potential

We don't (currently) know what expects us there

Nature doesn't "owe" us a new particle we can actually produce (directly) -> This has gained us negative publicity

precision

New physics

Direct BSM mass reach

- Collecting 20-30 ab⁻¹ extends mass reach by factor ~ 7 ($\sigma(M)$) • ~ $1/M^2$) from (HL-)LHC
 - Discovery potential in many models: SUSY, (WIMP) DM, Z', ٠ .. significantly extended

wino

higgsino

mixed $(\widetilde{B}/\widetilde{H})$

mixed (B/W)

gluino coan.

stop coan

squark coan.

Significance

😤 Universität Hamburg

WIMP DM with SM mediators

3

m_⊽ [TeV]

2

Collider Limits

5

100 TeV

14 TeV

6

ţ

Ň

10⁵

10⁴

10³

10²

10

10

CDR report

Search for $\tilde{t} \to t \tilde{\chi}_1^0$

CL_s Discovery

√s = 100 TeV

 $\mathcal{E}_{sys,bka} = 20\%$

 $\mathcal{E}_{sys,sig} = 20\%$

Ldt = 3000 fb⁻¹

8000

2000

DESY.

2000

4000

6000

m_~(GeV)

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

0000 (GeV)

- Boosted Top

- Compressed

8000

We don't (currently) know what expects us there

Nature doesn't "owe" us a new particle we can actually produce (directly) -> This attitude fuels controversy and criticism

Here, we have *guaranteed deliverables,* i.e. certain measurement precision levels

cleic

Exploration machine, not discovery

Focus here: Higgs Physics - 1H, +2H, 3H !?

New physics

Why the Higgs?

Candidate VBF H(bb) event display

Higgs couples to other (SM) particles in both its production and decay

1H: Higgs couplings

1H: Higgs couplings

Higgs couples to other (SM) particles in both its production and decay

- Different modes for each possible, involving different couplings
 - Bosons: *Gauge couplings* | Fermions: *Yukawa couplings*

With the Higgs mass known the SM predicts cross-sections and branching fractions !

Higgs couples to other (SM) particles in both its production and decay

- Different modes for each possible, involving different couplings
 - Bosons: *Gauge couplings* | Fermions: *Yukawa couplings*

With the Higgs mass known the SM predicts cross-sections and branching fractions !

DESY.

M_H [GeV]

1H: Higgs couplings

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

Universität Hamburg

DER FORSCHUNG | DER LEHRS | DER BLDUN

Higgs self-coupling modifier: $\kappa_{\lambda} = \lambda^{meas} / \lambda^{SM}$

- Measuring the Higgs self-coupling allows us to gain insight into the nature of the Higgs potential and electroweak symmetry breaking → of our universe
 - It would be the first evidence of a particle interacting with itself

• Wait why do we even care?

Shape of potential linked to type of the electroweak phase transition, which *could* explain origin of baryon asymmetry [Sakharov conditions]

• Cross-section of Higgs pair production is proportional to κ_{λ}

• Cross-section of Higgs pair production is proportional to κ_{λ}

• Cross-section of Higgs pair production is proportional to κ_{λ}

- But, there is destructive interference of triangle and box contributions
 - Tiny cross-section in the SM: $\sigma(ggHH) \sim O(1000)$ smaller than $\sigma(ggH)$
 - Experimentally very challenging !

• At LHC we set limits: -0.4 < κ_{λ} < 6.3 (<u>ATLAS-HDBS-2022-03</u>)

- At LHC we set limits: $-0.4 < \kappa_{\lambda} < 6.3$ (<u>ATLAS-HDBS-2022-03</u>)
- Only at future colliders we will reach a precision measurement

δκλ (68% CL)

- At LHC we set limits: $-0.4 < \kappa_{\lambda} < 6.3$ (<u>ATLAS-HDBS-2022-03</u>)
- Only at future colliders we will reach a precision measurement

+ 2H: Trilinear Higgs self-coupling measurement

Measurement nonetheless not easy due to Higgs decays

- Challenging final state
- Trade off between purity and high branching ratio

DESY.

140

	Combined precision
$oldsymbol{\delta\kappa}_{\lambda}$ (68% CL)	3.4% - 7.8%

🚊 Universität Hamburg

parameterisation	scenario I	scenario II	scenario III
b-jet ID eff.	82 - 65%	80-63%	78-60%
b-jet c mistag	15-3%	15-3%	15-3%
b-jet l mistag	1-0.1%	1-0.1%	1-0.1%
$\tau\text{-jet ID}$ eff	80-70%	78-67%	75-65%
τ -jet mistag (jet)	2-1%	2-1%	2-1%
τ -jet mistag (ele)	0.1 - 0.04%	0.1- $0.04%$	0.1 - 0.04%
γ ID eff.	90	90	90
jet $\rightarrow \gamma$ eff.	0.1	0.2	0.4
$m_{\gamma\gamma}$ resolution [GeV]	1.2	1.8	2.9
m_{bb} resolution [GeV]	10	15	20

We can derive detector requirements from our precision goals (benchmarking)!

٢

- At LHC we set limits: $-0.4 < \kappa_{\lambda} < 6.3$ (<u>ATLAS-HDBS-2022-03</u>)
- Only at future colliders we will reach a precision measurement

DESY. QUANTUM UNIVERSE

Iniversität Hamburg

3H: Quartic Higgs self-coupling

$$V(h) \approx m_h^2 h^2 + (1 + \kappa_3) \lambda_{hhh}^{SM} v h^3 + \frac{1}{4} (1 + \kappa_4) \lambda_{hhhh}^{SM} h^4$$

Triple Higgs production measurements will remain challenging, even at FCC-hh due to very low cross-section

Again ~ O(1000) smaller than the *HH* cross-section

Studies in final states with 4bs, <u>tau pairs</u> and <u>photon pairs</u>

Number of expected signal events is =< 10!

Combining several channels 3σ may be reached

Summary & concluding remarks

- Ample perspectives for answers to questions which might remain open after HL-LHC and aiming to collect 30 ab⁻¹ of data over 25 years it operates at energy and precision frontier
- Baseline design is a ~91 km collider with 100 TeV *pp*-collisions
 - Highest energy hadron collider considered feasible from today's view
 - Main challenges of technical feasibility are the need for 16 T magnets and cryogenic system
- A reference detector has been conceptualised
 - Main challenges for the detector are boosted+forward physics, high radiation & pile-up
 - We do not have full simulation! All studies are based on Delphes, making assumptions!
- Physics potential well established: Direct BSM mass reach extends to O(10) TeV, Higgs (and other SM) precision measurements, especially our star-player Higgs self-coupling
- It is far ahead in our future, but if (when) it gets realized FCC will be *the* project until the end of the 21st century. *You can help to make it happen!*

For something completely different?

Tunnel Boring Machine (TBM)

For something completely different?

Local cheese factories especially interested in the heat produced

Tunnel Boring Machine (TBM)

Need to run two TBMs 24/7 to complete tunnel in 8 years

Energy stored in magnets >~ 35 tons of TNT

What to do with the soil that is dug out? Sustainable, accelerated transformation with funghi

Bonus

Higgs self-coupling @ ILC

- Two production modes:
 - Higgsstrahlung, peaks ~500 GeV
 - WW-fusion, above ~1 TeV .
 - \rightarrow need runs at both energies for ٠ maximum κ_1 precision

- Studied dominant channels 4b and bbWW
- Advantage of *ee*-collider: *ZHH* cross-section increases with κ_{μ} , hence better constraints at values $\kappa_1 > 1$ than *pp*-colliders

QUANTUM UNIVERSE

Collider design: Parameters of magnet system

Parameter	(HL)-LHC	FCC-hh
Peak dipole field (T)	8.33	~16
# Long arcs w. dipoles	8	8
Length arc (km)	3	8
# Dipoles/arc	154	438
# main dipoles	1232	4668
Tot. energy stored in dipoles (GJ)	8.8	108 - 176

140 GJ ~ 35 tons of TNT

<u>Source</u>

56

Page 56

Reaching 16 T magnets: Historical view

HE-LHC 20 Malta 2010 18 Magnetic field (tesla) HTS 16 FCC-hh 14 Nb₃Sn 12 **HL-LHC** 10 8 Nb-Ti LHC SSC HERA 6 Tevatron RHIC 4 2 SPS & Main Ring (resistive) 0 1975 1985 1995 2005 2015 2025 2035 2045 Year

Magnetic field evolution for Hadron Collider

Forward physics

Fig. 2.2: highest lepton pseudo-rapidity for gluon-gluon fusion Higgs decaying to 4 leptons (left) and maximum jet pseudo-rapidity for vector-boson fusion Higgs (right)

Fig. 7.2. Longitudinal cross-section of the FCC-hh reference detector. The installation and opening scenario for the detector requires a cavern length of 66 m, which is compatible with the baseline assumption of $L^* = 40$ m for the FCC-hh machine.