

Unsupervised tagging of semivisible jets with energy-based autoencoders in CMS

Florian Eble, on behalf of the CMS collaboration

ETH zürich

01/05/2024

EuCAIFCon 2024

- AEs are free to minimize reco error outside the background phase space! including the unknown signal phase space...
- → This is the problem of **OOD reconstruction**:

Normalized Autoencoders (NAE)

CMS

- NAE features a mechanism to suppress OOD reconstruction
- First introduced in arXiv:2105.05735 and used in HEP in arXiv:2206.14225

- NAE paradigm:
 - $\bullet\,$ Define a probability distribution p_{θ} so that high probability regions have low reco error
 - $\bullet\,$ Sample from $p_{\theta}\,$ via a MCMC
 - $\bullet\,$ Minimize the distance between the background and p_{θ} probability distributions
- We propose a different metric to measure this distance, using the Earth Mover's Distance (a.k.a Wasserstein distance) and train NAEs in a fully signal-agnostic fashion

Multi-class classification of gamma-ray sources and the nature of excess of GeV gamma rays near the Galactic center

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Dmitry Malyshev

EuCAIFcon, Amsterdam, 30.04 – 03.05 2024 Poster session B, location 116

Dark matter in the Galactic center

 Galactic center (GC) is the strongest possible source of dark matter (DM) annihilation signal

• Excess consistent with DM annihilation was detected in Fermi-LAT

gamma-ray data two months after the data became public

Goodenough & Hooper (2009), Vitale & Morselli (2009), Hooper & Linden (2011), Abazajian & Kaplinghat (2012), Hooper & Slatyer (2013), Gordon & Macias (2013), Calore et al. (2015), Daylan et al. (2016), Ajello et al. (2016), Ackermann et al. (2017) etc

Astrophysical explanation

- ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS
- A population of millisecond pulsars (MSPs) near the GC can explain the Galactic center excess (GCE) Projected Distance (kpc) 0.5 1.5 2 2.5 Disrupted GCs Average Field MS E² dN/dE (GeV/cm²/s/sr) Daylan+ 2014 Average Field MSP, $\sigma(2 \text{ GeV}) \ge 8$ Hooper+ 2013 Image credit: NASA Daylan+2014 GeV Excess Calore+ 2015 Calore+2015 Systematic Errors 10-6 Brandt & Kocsis (2015) 10 15 20 5 Ψ (degrees) 0.3 0.5 3 5 10 E, (GeV) Statistical studies Gal. latitude [deg] Lee et al. (2015, 2016), Bartels et al. (2016), Leane & Slatyer (2019, 2020), Zhong et al. (2020), List et al. (2020), Calore et al. (2021), Mishra-Sharma & Cranmer (2022), Caron et al. (2023), Manconi et al. (2024) etc. Bartels et al. (2016) -16 Based on statistical properties ℓ, Gal. longitude [deg] Flux $F | \text{erg} / \text{cm}^2 / \text{s}]$ of the Gamma-ray data 10^{-13} 10^{-15} 10^{-11} 10^{-9} Wavelet 1 GCE •••• NPTF 10^{2} Population studies AIC Wavelet 2 Disk CdN/dL [erg / s]GLC

10

10

 10^{-10}

 10^{30}

Brandt & Kocsis (2015), Hooper & Linden (2016), Bartels et al. (2018), Ploeg et al. (2020), Dinsmore & Slatyer (2022) etc.

Associated (bright) MSPs are used to constrain the models

 10^{32} 10^{34} 10^{36} 10^{38} Luminosity L [erg / s] Dinsmore & Slatyer (2022) 2

How can machine learning help?

Dmitry Malyshev, GCE and ML classification of Fermi LAT sources, EuCAIFCon, 2024

b-hive:

a modular training framework for state-of-the-art objecttagging within the Python ecosystem at the CMS experiment

Motivation:

- Everybody wants to do Machine-Learning trainings
- Full end-to-end pipeline is way harder than an example Notebook
 - Big data processing (ROOT files)
 - Conversion into a ML-friendly format (.npy/.npz)
 - Deploy state-of-the-art models
 - ParticleNet (graph-convolutions)
 - Transformer models

Also:

- Have clearly defined workflows (not your 7 bash scripts!)
- Make trainings repeatable
- Standardized evaluation tools

b-hive attacks these problems

- Pythonic training framework
- Workflow management with law
- coffea, awkward, numpy for the heavy data lifting
- No ML-framework lock in
 - TensorFlow and PyTorch can be used
 - ➔ Modular Setup

- Easy configuration for different working-groups
- New applications are embedded in the pipeline
- Knowledge-sharing by code-sharing Have a look: CERN-CMS-DP-2024-020

•••

	bins_pt:
3	- 30
4	- 100
5	- 500
6	- 2000
8	bins_eta:
9	2.5
0	2.0
	0.5
	- 0.5
3	- 2.0
4	- 2.5
5	
6	treename:
	"producer/custom_tree"
8	
9	<pre>global_features:</pre>
0	- "jet_pt"
	- "jet_eta"
	<pre>- "n_Cpfcand"</pre>
3	<pre>- "n_Npfcand"</pre>
4	- "nsv"
5	– "npv"
6	
7	pf_candidate_features:
8	<pre>- "pfcand_pt"</pre>
9	<pre>- "pfcand_eta"</pre>
0	<pre>- "pfcand_trackPt"</pre>
	<pre>- "pfcand_trackEta"</pre>
2	<pre>- "pfcand_trackDeltaR"</pre>
3	
4	truths:
5	- "ISB"
b	- "isUDS"

'isG

ENERGY-BASED GRAPH AUTOENCODERS FOR SEMIVISIBLE JET TAGGING IN THE LUND REPRESENTATION

Annapaola De Cosa, Roberto Seidita, Florian Eble, Christoph Ribbe¹

Dark quarks from a proton-proton collision

Shower of stable (invisible) and unstable (visible) dark particles A semivisible jet (SVJ): a spray of particles with missing stuff between them

but could not join

WHY UNSUPERVISED?

Annapaola De Cosa, <u>Roberto Seidita</u>, Florian Eble, Christoph Ribbe

JETS AS LUND GRAPHS

Annapaola De Cosa, <u>Roberto Seidita</u>, Florian Eble, Christoph Ribbe

Input feature space

