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Poster # 120 NORMALIZING FLOWS AND THE BAYESIAN EVIDENCE
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Posterior distributions in increasing complexity
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Why does it work well?
| | Loss scheduling
Transfer learning over different losses that: 5
m— Talning
o 10 = Validation
1) Includes the standard cross-entropy loss of flow training &5 .
2) Minimizes the error in the evidence estimation &5.
Q 0
3) Robust to low sample statistics &5, £5;; —5-
— Trained over @(Ngamples) data points. o
Applications? G 100 200 300 400 500

Evidence of higher modes in gravitational waves? (Ongoing analysis)

Evidence of stochastic gravitational wave background from Pulsar Timing Arrays observations?

Rahul Srinivasan EUCATECon 24
Post-doctoral researcher, SISSA, [taly



SYMBOLIC REGRESSION FOR PRECISION LHC PRYSICS (# 117)

Josh Bendavid, Daniel Conde, Manuel Morales-Alvarado, Maria Ubiali,Veronica Sanz

Our goal: find robust, simple, analytical expressions to describe collider observables

We simulate particle collisions and use event-level kinematics as input data

We use symbolic regression (SR) to find accurate, simple equations that describe the data

In SR, equations are represented by expression trees. During optimisation, they mutate and mix to provide better candidates

Mutation

Expression tree
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SYMBOLIC REGRESSION FOR PRECISION LHC PRYSICS (# 117)

erc
Josh Bendavid, Daniel Conde, Manuel Morales-Alvarado, Maria Ubiali,Veronica Sanz IR
We assess the quality and the robustness of the SR results by equation recovery. Consider an angular distribution:
SR formulas (xg = cos 8)
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Can’t wait to know more?
Thursday, poster 117!
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Star Equation of State with
Bayesian Deep Learning

Giulia Ventagli .
CEICO, Institute of Physics of the Czech Academy of Sciences




From observations to nuclear matter properties

Image soure: ESA '
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Our predictions
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We also include and predict a vacuum energy phase transition!

N Institute of Physics
0 of the Czech
’ Academy of Sciences
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Reconstructing dynamic from gravitational wave signals &8 ;/Glicoow CGRV,
Joe Bayley, Chris Messenger, Graham Woan ?

Often burst gravitational signals

do not have clear waveform
models.

What information about the A “ .
source can we recover from the

gravitational wave signal alone?

VWe aim to reconstruct the

mass dynamics of the system:; We can
- Mmasses ? _—

. . simulate this
- spatial position of masses




Strain [H1]

Models
We simulate lots of random non physical motion and can reconstruct physical motions.

Time domain
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o See here for
f you're interested come and see my poster. animations.
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