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In many ways we’ve always had 
a foundation model for general 
purpose experiments.. 

Some more detail here: [Slides]

https://indico.cern.ch/event/1202995/contributions/5241156/attachments/2744152/4774403/HN_2023_Talk.pdf


Key Property: Finetuning!



It works!
Finetuning & other workflows from Foundation Model research translate to 
particle physics and can lead to 100x more data-efficient models



   ML Unfolding for error reduction  
   in Lattice QCD observables

Simran Singh - Postdoc @ Bielefeld LGT group

Lattice QCD - currently our best 
probe for understanding low energy QCD
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Discretise space-time and move to Euclidean space 

Sample Gauge configurations from a probability distribution

Compute observables on the generated configurations 𝒪( ∼ (1 − 10)K)
⟨𝒪⟩ ∼

∂ ln Z
∂K

∼ Tr (M−1
f

∂Mf

∂K )
Typical size of  Fermion matrices :    , can go up to N3

σ × Nτ × Nc × 4 ∼ O(107 − 109)
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⟨ηTMη⟩L ≃ TrM + 𝒪 ( f(M)

L )

Random Noise Method

No access to individual matrix elements - only matrix vector products !

Choose L randomly drawn vectors  satisfying certain conditions to getη

Data Unfolding via NN
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    Simran Singh, Universität Bielefeld, Germany    

   ML Unfolding for error reduction  
   in Lattice QCD observables

Computing observables in lattice QCD Random Noise method

ML based Unfolding : Try to un-learn the effect of finite # of random sources

Results of experiments
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Z = ∫ 𝒟U det Mn
f e−SG

✤  In lattice QCD, fermions integrated out to give

✤  Observables                       derivatives of ln , e.g.                     Z

✤   Typical size of Fermion matrices :    , 
can go up to 

N3
σ × Nτ × Nc × 4

∼ O(107 − 109)
✤  No direct access to matrix elements, only vector 

products.

✤  Current state of art method to compute these 
traces based on drawing random vectors from a 
distribution satisfying

&

✤    Trace of  is then given by:M

✤    Only true in the limit of sampling infinite such 
randomly drawn vectors.
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✤   Goal : To reconstruct the underlying “true” distribution from observations, which are smeared by “limited 
experimental” resolution. 

✤  Equivalent to solving the inverse problem : , with the goal to learn 

, given 

Fobserved(x) = ∫ K(x, y) * Ftrue(y)dy

K−1(x, y) Ftrue & Fobserved

✤ Can one adapt this to reduce error on the estimate for Tr  by asking whether we can train a  sequential NN 
on two distributions : one with very small number of sources  and the other with very large number of 
sources  ?

M
Fobserved

Ftrue

✤ Tests performed on matrices with 
different structures - sparse and 
dense, different sizes ~ 100, 1000, 
10000, Poisson and normally 
distributed elements.

✤  Could we then perform measurements on different matrices with small number of sources and apply this 
transformation to estimate their true trace  ?

✤ Re-training has to be done but 
needs fewer resources !

✤Next step : Apply to real QCD data …
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quark number density : 

Question 1 : Can we train a NN to learn the systematic effect caused by using 
only finite such random vectors - given for some observable the true 
distribution with very large  and measured distribution with very small  ?L L

Question 2 : How does this 
generalise to different 
Matrices? 

Poster # 77 
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