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Francesco Cirotto

Finding anomalies in Jets
WHERE IS LHC GOING?

⚬ No Physics Beyond Standard Model (BSM) has been observed at the LHC (yet!) 

⚬ The currently most used search paradigm is using model-dependent approaches 

↪︎What if these models have blind spots for unconventional new physics signatures? 

↪︎If there’s new Physics in the current LHC data we can’t miss it! 

⚬ Anomaly detection can find deviations in Standard Model events, without any signal 
dependency
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Use jets as tools! 

⚬ Searches in full hadronic final states 

↪︎Investigate its substructure by studying jet constituents 

↪︎What we use:  of each constituentpT, η, ϕ



Francesco Cirotto

 The First Use of Unsupervised Learning on ATLAS Data
Y → XH

⚬ The Y →  XH analysis searches for heavy resonances 
decaying into a Higgs boson and new particle X in a 
fully hadronic final state  

⚬ Developed an unsupervised Variational Recurrent 
Neural Network to define an “Anomaly Signal Region) 

↪︎Recurrent neural network that updates a VAE 
latent space at each time step, accommodating 
variable-length input sequences
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Can we improve the “classical” approach?



Francesco Cirotto

A developing approach
DIGGING DEEPLY WITH GRAPHS
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⚬ Graph-structured data are ubiquitous across science, engineering, and many other 
domains  

↪︎Used to describe and analyze relations and interactions  

↪︎Can encapsulate object or event information 

⚬ Our strategy: to represent jets as graphs and then apply machine learning to build an 
anomaly detection algorithm  

↪︎Developing both object and event level graphs to detect anomalies 

⚬ Preliminary results on LHC Olympics dataset Francesco Cirotto1,3, Francesco Conventi2,3, Elvira Rossi1,3

The lack of evidence for new interactions and particles since the Higgs boson’s discovery has motivated the execution of generic searches to complement the existing rigorous, model-dependent analysis 
program. Unsupervised machine learning can offer a new style of analyses which is completely agnostic to types of new-physics models and to any expectations of scientists.  ATLAS collaboration is pursuing 
this new approach, with a first published result in a search for a heavy resonance Y decaying into a Standard Model Higgs boson H and a new particle X in a fully hadronic final state. Moreover Graph Anomaly 
Detection (GAD) exploits innovative machine learning algorithms denoted as Graph Neural Networks, which have proved to be more efficient than standard techniques when applied to heterogeneous data 
naturally structured as graphs.

Anomaly Detection (AD) uses unsupervised Machine Learning 
architectures to identify outliers in a set of “standard” objects. 
In High Energy Physics, this means the identification of 
features of detector data inconsistent with the expected 
background. 
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Building a tool to perform 
model-independent classification 
of collision events involves 
training on data events, and 
therefore requires the ability to 
cope with a lack of labels 
indicating whether inputs are 
signal or background.

Many Beyond Standard Model theories predict new massive resonances which can decay hadronically, leading to final states involving jets. 

For massive particles, their decay products become collimated, or ‘boosted’, in the direction of 
the progenitor particle. For massive particles that are sufficiently boosted, it is advantageous 
to reconstruct their hadronic decay products as a single large-radius (large-!) jet. 

Jet information can be used as input features for neural network architectures. A significant 
improvement in performances can be achieved by employing  a set of features with basic 
information (low-level) [1] such as information coming directly from the detectors. Jet constituents 
represent challenging input features to achieve this goal. 

In the architectures described below a pre-processing method is applied which boosts each jet to 
the same reference mass, energy, and orientation in η − φ space, such that all input jets differ only 
by their substructure [2]. 

The two selected leading large-R jets are 
identified as H or X. Higgs tagging is 
performed with a neural network approach 
to separate bosons decaying into "-quarks 
from top-quark and QCD jet. According to  
X tagging three orthogonal Signal Regions 
(SR) are defined: Merged, Resolved and 
Anomaly. 

Signal Regions

Merged Resolved Anomaly

mH  [GeV] (75, 145)

DHbb > 2.44

D2trk < 1.2 > 1.2 -

|Δyj1,j2| - < 2.5 -

pTbal - < 0.8 -

Anomaly 
Score - - > 0.5

Building the architecture 
Anomaly Score is obtained with a Variational 
Recurrent Neural Network (VRNN), a sequence-
modeling architecture which replaces the standard 
encoder-decoder architecture of a Recurrent Neural 
Network with a Variational Autoencoder (VAE). This 
allows the VRNN to perform both sequence 
modeling in addition to variational inference.  

Inputs to the VRNN consist of sequences of up to 20 
jet four-vector constituent components pT, η, and 
φ, where constituents are assumed to be massless. 

The first application with AD technique in ATLAS is a search for a heavy resonance Y decaying into 
a Standard Model Higgs boson H  and a new particle X in a fully hadronic final state 
( ) using the full Run-2 dataset collected by ATLAS from 2015 to 2018, 
corresponding to an integrated luminosity of 139 fb-1 [3]. 
Y → XH → qq̄bb̄

The main QCD background is estimated with a fully data-driven method. A DNN has been 
implemented to estimate background in Signal Region, by reweighting events with a proper 
function obtained from Control Regions (direct importance estimation).

The observable fitted in the 
analysis is the mY distribution of 
the data in the SR. The fit is 
repeated several t imes in 
overlapping bins of mX. 

BUMP HUNTER algorithm used to 
find excesses, with a p-value as 
goodness-of-fit metric.  

Given the absence of signal 95% CL upper limit on the 
cross section of the process have been 
derived combining results of merged and resolved 
Signal Regions 

Y → XH

A comparison between anomaly detection and 
standard analysis can be obtained deriving the 
95% CL upper limit on the cross section of 
several benchmark signals by injecting signals 
into the data until a significance of  is found.  
The Anomaly Score shows same results as 
Merged SR for signals where the X particle is 
highly boosted.
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Graph Neural Networks (GNN) have proved to be innovative machine learning techniques 
useful to perform anomaly detection. In the search for resonances in fully hadronic final 
states jets complex substructure can hide New Physics. Due to its sparse structure they 
result suitable for a graph representation. These graphs can be used to represent large-R 
jets by expressing potentially heterogeneous detector information.

A graph is a set of points (nodes) 
that can be connected by edges 

what is a node?  
✽each constituent is a node  
✽node features: pT fraction, η, ϕ 

when are nodes connected?  
✽Constituent distance-based edge 

feature 

Message passing: vector messages are exchanged 
between nodes and updated using neural 
networks. At each iteration, every node aggregates 
information from its local neighborhood. At the 
end each node embedding contains more and 
more information from further reaches of the 
graph.  

Tested architecture on R&D LHC Olympics 2020 dataset [4]: generated 1M multi-jet background and 100k 
signal ( ) events, where X and Y are reconstructed as large-R jets. Z′ → XY → qq̄qq̄

Building the architecture 

EGAT (Edge Graph Attention Network): edge focused graph 
neural network with implemented attention mechanism. Edge 
features are updated by message passing along with node 
features at each layer.  

Unsupervised minimization of a DeepSVDD objective, results 
interpreted with discriminating anomaly score →  loss value 
calculated per jet after training.  

Event level score obtained by combining the 2 jets anomaly 
scores. 

Distribution of X candidate anomaly score in data for 
several signal hypotheses.

Very promising results with LHC Olympics dataset, AUC ~0.82 in 
event-level anomaly score approach. 
The architecture will be tested on official ATLAS datasets. 

Finding anomalies in HEP Using Jets for Anomaly Detection

Anomaly Detection in ATLAS in fully hadronic final states

Towards Jets representation as Graphs Results
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Preliminary results

Large-R jet (left) and small-R jet (right) 
reconstruction. 
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Observed #-values across all $% and $& bins in the anomaly signal region.

Observed 95% CL upper limit on the cross section 
for merged and resolved SRs combination.

The 95% CL upper limit on the cross section for seven 
benchmark signal processes, comparing the anomaly, two-
prong merged, and two-prong resolved signal region selections. 

Jet-level (top) and event-level (bottom) anomaly 
score distribution for signal (blue) and background 
(orange). 
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OmniJet- : the first cross-task foundation model for particle physics (arXiv:2403.05618)αJoschka Birk, Anna Hallin, Gregor Kasieczka

Pre-train on one task/dataset, then fine-tune on other task/dataset
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Foundation models for HEP



OmniJet- : the first cross-task foundation model for particle physics (arXiv:2403.05618)αJoschka Birk, Anna Hallin, Gregor Kasieczka 3

Foundation models for HEP

Our pre-training task

Our fine-tuning task

Pre-train on one task/dataset, then fine-tune on other task/dataset
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Our approach
Jet constituents with continuous features Constituents are tokenized with a VQ-VAE 

(using the approach presented by Sam Klein earlier)

Unsupervised pre-training of transformer backbone 
on generative task  (next-token prediction)

Fine-tuning to classification task: 
Swap model head and copy over the 
weights from the pre-trained backbone



OmniJet- : the first cross-task foundation model for particle physics (arXiv:2403.05618)αJoschka Birk, Anna Hallin, Gregor Kasieczka

• Classification:  vs.  jets


• Generative pre-training with both jet types 

• Pre-trained / fine-tuned model (●●) reaches 
same performance as from scratch training 
with 100-1000x less training samples

t → bqq′ q/g
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Does generative pre-training help for classification?

 Generative pre-training is a promising target for unsupervised pre-training in HEP→
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3D Ising model

Autoregressive neural network:

qθ(s) =
N∏
i=1

qθ(si |s1, s2. . . . si−1)

Hierarchical structure:

p(s) = p(B(s))p(I(s)|B(s))

Figure: Scheme of hierarchical
decomposition of 4 × 4 × 4 cube

Applying hierarchical autoregressive neural networks for three-dimensional Ising model WFAIS UJ
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Results

Neural Importance Sampling:

Z =
1
N

N∑
i=1

e−βE(si )

qθ(si )
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Figure: Free energy of β for HAN
neural network
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