

Alsing et al. (2024) arXiv:2402.00935

Poster Session B - May 1st

European Research Council Established by the European Commission

AI-enabled Insights into Galaxy Evolution with pop-cosmos

Sinan Deger Institute of Astronomy & Kavli Institute for Cosmology University of Cambridge

With Justin Alsing, Hiranya Peiris, Stephen Thorp^{*}, Boris Leistedt, Daniel Mortlock, and Joel Leja

*At EuCAIFCon24

The pop-cosmos Framework - An Overview

Training loop for pop-cosmos

Fitting pop-cosmos to Observations

We fit pop-cosmos to COSMOS20 (Weaver+22), a deep galaxy survey with observations from the ultraviolet to the infrared.

Trained pop-cosmos

Survey Noise & Selection

Demographics of any spectroscopic/photometric survey to r < 25

The simulation-based optimization approach in pop-cosmos results in a generative model representative of general galaxy populations

Our Al-enabled model unlocks a unique way to investigate the evolution of galaxy populations across 90% of cosmic time (z < 4).

Convolutional neural network search for

3 Institute of Applied Computing & Community Code.

long-duration transient gravitational waves from glitching pulsars

Rodrigo Tenorio – University of the Balearic Islands & IAC3

We present a machine-learning search for transient continuous gravitational waves (CWs) sourced by a glitch in the Vela pulsar during the Advanced LIGO O2 observing run.

The resulting pipeline is about 80 times faster than state-of-the-art pipelines at less than a 10% loss in sensitivity.

Transient CWs are decaying CWs produced by transient deformations in neutron stars such as decaying mountains or r-modes.

Physical amplitude-evolution models are computationally prohibitive due to the unknown duration and start time of the signal.

Do we train our SBI models optimally?

Tuning Neural Posterior Estimation for Gravitational Wave Inference

- Efficient training
- Low hardware requirements
- Yet, quick inference!

POSTER LOCATION: **113**

