Optimal, fast, and robust inference of reionization-era cosmology with the 21cmPIE-INN

Redshift

Benedikt Schosser — May 1, 2024 — EuCAIFCon 2024 — Poster Location: 108

Optimal, fast, and robust inference of reionization-era cosmology with the 21cmPIE-INN

Benedikt Schosser — May 1, 2024 — EuCAIFCon 2024 — Poster Location: 108

SIMULATION-BASED INFERENCE FROM THE CD-EOR 21-CM SIGNAL

Anchal Saxena, Alex Cole, Simon Gazagnes, Daan Meerburg, Christoph Weniger, Samuel Witte

GOALS

- Constrain the astrophysics of the early * Universe with 21-cm line
- Solving the inverse problem! *

CHALLENGES

- Scalability of the conventional methods to high dimensional parameter spaces
- Expensive forward models *
- Likelihood of the 21-cm power spectrum? *

SOLUTION

Simulation-Based Inference through * Marginal Neural Ratio Estimation

Years after the Big Bang

Square Kilometer Array

a.saxena@rug.nl

EUCAIFCON 2024 | University of Amsterdam | MAY 2024

SIMULATION-BASED INFERENCE FROM THE CD-EOR 21-CM SIGNAL

Anchal Saxena, Alex Cole, Simon Gazagnes, Daan Meerburg, Christoph Weniger, Samuel Witte

GRavitation AstroParticle Physics Amsterdam

Years after the Big Bang

SIMULATION-BASED INFERENCE FROM THE CD-EOR 21-CM SIGNAL

Anchal Saxena, Alex Cole, Simon Gazagnes, Daan Meerburg, Christoph Weniger, Samuel Witte

order of magnitude fewer samples than MCMC

Square Kilometer Array

a.saxena@rug.nl

EUCAIFCON 2024 | University of Amsterdam | MAY 2024

Flexible conditional normalizing-flow distributions over manifolds: the jammy-flows toolkit

UPPSALA UNIVERSITET

Thorsten Glüsenkamp, May 1st 2024, EuCAIFCon flash talk

FÖR VETENSKAPLIG FORSKNING

EUROPEAN AI FOR FUNDAMENTAL PHYSICS CONFERENCE EuCAIFCon 2024

Normalizing flows are great, but....

Jammy Flows ([1] https://github.com/thoglu/jammy_flows)

Joint Autoregressive M(MY)anifold normalizing flows setup complex normalizing flows in 1 line of code [1]

Supports various manifolds + autoregressive linking

Poster No: 110

Poster No: 110

A deep learning method for the trajectory reconstruction of gamma rays with the DAMPE space mission

Parzival Nussbaum, Chiara Perrina, Jennifer Frieden 01.05.2024 EuCAIFCon

Standard approach to trajectory reconstruction

- **1** Shower profile \implies BGO reco track
- Olustering the STK hits
- Track-finding algorithm on clusters in the STK:
 - Seeding (calorimeter-seed or blind-seed).
 - Propagating using a Kalman Filter.
 - Filtering based on χ^2 and cluster count.
- 4 Multiple track candidates
 - \implies metric (TQ) to choose the best track

Next generation experiments

Standard reco is more challenging at higher energies since systematic uncertainties increase

CNN approach to trajectory reconstruction

- **1** Shower profile \implies BGO reco track
- Olustering the STK hits
- **3** Hough transform of STK hits
- 4 CNN model prediction
 - Seeding (calorimeter-seed or blind-seed).
 - Propagating using a Kalman Filter.
 - Filtering based on χ^2 and cluster count.
- 6 Multiple track candidates

 \implies metric (TQ) to choose the best track

Results

- 300 times faster than standard reco
- One third of standard method precision
- · Successful proof of concept on flight data

