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Basic problem of neuroscience and brain research:
   --- Brain sciences lack a unifying mathematical theory of brain function, 

        theories for individual faculties are not available either.

Innovative answers from neuroscientists:
   --- Generative modelling framework has been widely adopted to explore mathematical

        principles in a data-driven manner: generative models are probabilistic models 

        that assume that observations are a result of a (nonlinear) combination of latent factors

       that correspond to relevant quantities (e.g. physical measures);

   --- Neuroscience has adopted an open-ended approach to learn about the mathematical

       principles by constraining them with an ever-more-complex approach to data: 

        instead of constraining data to more-and-more controlled settings, rich and 

        little-constrained data is flexibly interpreted with AI-borrowed deep generative models;

   --- Diffusion models, variational autoencoders, contrastive learning methods provide 

        a spectrum of opportunities to integrate complex nonlinear generative models 

        with physical intuitions as inductive biases, or generalize interpretations across 

        existing experiments, as well as to new experiments. 



Basic problem of HEP research:
   --- A unified mathematical theory (Standard Model) describes experimental data

        with high precision, but we do not understand the origin of the „free parameters”

        and do not see hints for Beyond SM phenomena – although numerous candidates

        exist to become the winner mathematical model.

Basic problems of Nuclear Physics research:
   --- The World of strongly interacting many-body systems is very rich, 

        no unified mathematical theory describes experimental data with reasonable precision;

   --- Numerous phenomenological description has been invented,

        but the connection between these models are weak in many cases. 

 

Basic problems of Astroparticle (and Astro)Physics: 
   --- Enormous amount of data arrive from the new instruments (telescopes, detectors) 

        and the understanding of these data is focusing into a very narrow target direction;

   --- On the other hand the usual expectation is to understand the multimessenger data

        in a unified frame, answering basic questions about the investigated objects;

   --- Numerous phenomenological description has been invented,

        but the connection between these models and connection to HEP is not well established

        (see e.g. the problem of „dark matter” and „dark energy”). 



How does Artificial Intelligence and Machine Learning could help?

      (What could we learn from neuroscientists?)

   --- Probabilistic approaches already receive wider support in HEP

        (see e.g. the separation of gluon-jets and quark-jets during their study and detection)

   --- ML applications became part of the usual routine protocol in data analyses,

        self-improving cycles are capable to increase the precision 

        (altough the request of CPU-time is enormous, it is limiting the applications)

   --- Generative model applications are widely adopted to explore mathematical

        principles in a data-driven manner: the identification and exploration of latent factors

        and their non-linear combination is in the focus of recent analysis to discover new

        knowledge element hiding behind the phenomenological descriptions;

   --- During the analyses of huge and complex datasets (including high-resolution pictures and 

        time evolution with small timesteps --- see e.g. multimessenger astrophysics) 

        the application of diffusion models, variational autoencoders, contrastive learning 

        methods could provide a spectrum of opportunities to integrate complex nonlinear 

        generative models with physical intuitions as inductive biases, and improve

        the interpretations and understanding of existing date  (see e.g. LSST mission). 

Cross-fertilization between different fields and disciplines could become very useful !



Useful Links:

HUN-REN Wigner Research Centre for Physics: 

https://wigner.hun-ren.hu/en/

      

14. GPU Days: Meeting on Massive Parallel Computing

     Date: 30-31 May 2024, Budapest, Hungary 

     https://gpuday.com/

6. HEPTECH AIME on AI/ML and Quantum Computing

      Date: 18-19 November 2024, Budapest, Hungary 

      5. AIME:  https://indico.wigner.hu/event/1523/

Wigner Datacenter at Wigner RCP

  https://wignerdc.wigner.hu/home
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Weakly supervised anomaly detection can be applied to resonance searches to 
find BSM physics.
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Motivation

• To find new physics, improve largely model agnostic searches, e.g., resonance searches
: Use pattern recognition capability of machine learning in high dimensional feature space to
gain higher sensitivity

• Problem: Currently many papers use only 4 high level features (“baseline” feature set) on one
benchmark dataset (LHCO R&D dataset [1])
: For more model agnostic setup need to be able to use more features

Goal: Improve classifier setup for more high level features and low level features

Weakly supervised anomaly detection

Classification Without Labels (CWoLa) [2]

• Classifier between mixed datasets pi(x) = fi pS(x) + (1 ≠ fi) pB(x) with signal fractions fi

Rmixed =
f1 Roptimal(x) + (1 ≠ f1)
f2 Roptimal(x) + (1 ≠ f2)

, where Roptimal(x) = pS(x)
pB(x) (1)

is the optimal classifier between signal and background distributions pS/B.
: Mathematically equivalent as Rmixed monotonous in Roptimal

Application to resonance searches

• Divide data into signal region (SR) and sideband (SB), where

pSR(x) = pS(x|m œ SR) + pB(x|m œ SR) and pSB(x) = pB(x|m œ SB) (2)

for classification features x.
• Construct “background template” from SB, ideally with p(x) = pB(x|m œ SR)

: Here, we use idealized case to study classifier only

B

B

B

B

B

S

B

S

B

B

B

S

B

S

B

B

B

S

S

S

S

S

B

B

B

S

S

S

B

B

S

S

Classifier

Figure 1. Left: Sketch of weakly supervised classification setup. Right: Division of data into SR and SB for a resonance
search.

BDTs for high level features [3]

Machine Learning background
Boosted Decision Trees (BDTs) are known to be very effective on tabular data, especially for small
datasets [4].

1. Few signal events : small effective dataset
2. High level features : tabular data

Classifier Setup

• NN: Ensemble of N fully connected neural networks
• BDT: Ensemble of N gradient boosted decision trees

Study: Uninformative features
We study the classifiers by introducing uninformative features (features drawn from Gaussian noise),
which the NN is particularly sensitive to. The BDT’s performance is very robust, meaning that we can
add more features to an analysis.

Figure 2. SIC curves of IAD NN/BDT classifiers employing four baseline features and additional Gaussian features. For 30
and 50 Gaussian features, ensembling of BDT increased to N = 100, otherwise N = 50.

Study: Additional physics-motivated features
We study datasets with more subjettiness-based features.

• Extended set 1: 10 features (baseline + 6 additional), some largely uninformative
• Extended set 2: 12 features, all slightly informative
• Extended set 3: 56 features, all slightly informative

BDT robustness against uninformative features translates to being well-behaved with additional fea-
tures. Not present for NN.

Figure 3. SIC curves of IAD NN/BDT classifier with 4 feature baseline dataset and three extended feature sets.

Graphs for low level features

Machine Learning background
Graph Neural Networks can represent HEP data
in a permutation invariant manner. Architectures
can incorporate symmetries directly.
: Very successful on top tagging tasks

Study: Top tagger on LHCO dataset
State of the art top taggers were studied on the
LHCO R&D dataset.

• Modified LorentzNet architecture [5] found
to result in the best performance.

• Performance drops sooner than observed
for high level features.

Figure 4. SIC curves for supervised classifier and IAD on
low level features.

Conclusion

• Increased model agnosticity for anomaly detection can be achieved by careful consideration of
the architecture and input features.
: High level features can provide good performance with current state of the art technology
: Low level features are the more future-oriented approach but in the present still more
difficult to achieve

Figure 5. Maximum SIC for different signal injections
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search.
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Usual features for weak supervision 
papers 

 not very model agnostic⇒

LHCO R&D dataset 

Background: QCD dijets 
Signal:  
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To include more features, robustness against uninformative features is necessary, 
which is not present for NNs. 



Galaxy redshift estimations with transfer and multi-task learning

M. Eriksen [eriksen@pic.es], L.Cabayol, H.Guo - IFAE-PIC, Barcelona

- Cosmology requires redshift estimations for large number of 
galaxies.

- Image galaxies in different bands and determine redshift as an 
inverse problem. 

- Challenge: Inferring galaxy distances with small and biased 
training samples.



Transfer learning from simulations

Normal pretraining

Better transfer learning scheme

arXiv: 2004.07979
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Galaxy brightness

No simulated data

- Deepz is a deep neural network 
for photo-z estimation.

- Achieved state-of the art results 
on narrow-band photometry.

- Combining simulated data is key.



Multi-task learning

Problem: How to benefit from PAUS NB, 
which only covers 0.3% sky-area of Euclid.

Solution: Multi-task learning, predicting PAUS 
narrow bands (top plot).

Result: Reduces the photo-z scatter for all 
galaxies (bottom plot).

arXiv: 2209.10161
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Riemann problem

Neural networks

1

Gradient-Annihilated PINNs for Solving Riemann Problems: Application to Relativistic Hydrodynamics

Keywords
Euler equations

Relativistic hydrodynamics

Problems with discontinuous initial conditions

Physics-Informed Neural Networks

Problems in Astrophysics:
New application

30/04/2024

Relativistic densities of mass, momentum
and energy, respectively.

Density, velocity and pressure
of the fluid: primitive variables.
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Gradient-Annihilated PINNs for Solving Riemann Problems: Application to Relativistic Hydrodynamics

METHOLOGY PROPOSED Diagram and algorithm

Antonio Ferrer-Sánchez, José D. Martín-Guerrero, Roberto Ruiz de Austri, Alejandro Torres-Forné, and José A.
Font. Gradient-annihilated pinns for solving riemann problems: Application to relativistic hydrodynamics, 2023.30/04/2024
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Gradient-Annihilated PINNs for Solving Riemann Problems: Application to Relativistic Hydrodynamics

SOME RESULTS Riemann problems in Relativistic Hydrodynamics

30/04/2024
Figure 2: Final profiles for the primitive variables (density, velocity and pressure) with respect to the analytical

solution (black solid line) obtained by the GA-PINN in (a) and by a vanilla PINN model in (b).
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