Fast and reliable dark matter
inference for Euclid strong lensesConor O'Riordan,
Dark Matter Group

Training data

MAX PLANCK INSTITUTE

FOR ASTROPHYSICS

Testing systematics

PL only

PL + 1% MP

Allowing for 1% angular perturbations in the lens means...

80%

loss in sensitive area

0.25 dex

loss in sensitivity depth

Dark matter science in Euclid

Now: the first 100s of lenses

- First dark substructure detections
- Measuring multipoles in large lens sample
- 100s of non-detections would be in tension with CDM

Soon: the first 1000 lenses and beyond

- + First constraints on f_{sub}
- + Constraints on LOS mass function
- + ML sensitivity mapping at large scales

EuCAIFCon 2024 Weak supervision for quark/gluon tagging in CMS Open Data (Poster #81)

Ayodele Ore

In collaboration with Matthew J. Dolan and John Gargalionis

Weakly-supervised quark/gluon tagging

- At LHC, High-energy quarks and gluons both lead to *jets.*
- Neural networks are good classifiers, but full supervision inherits large theory uncertainty from simulation.
- Weak supervision allows models to be trained directly on data, using **mixed quark/gluon** samples. Metodiev et al. JHEP10(2017)174

Our study: How do models rank on real data?

EUROPEAN AI FOR FUNDAMENTAL PHYSICS CONFERENCE EuCAIFCon 2024

A fast convolutional neural network for online particle track recognition

N.V. Biesuz², R. Bolzonella^{1,2}, P. Cardarelli², E. Calore², **V. Cavallini**^{1,2}, M. Fiorini^{1,2}, S.F. Schifano^{1,2}, R. Zese¹

- 1 University of Ferrara, Italy
- 2 Istituto Nazionale di Fisica Nucleare (INFN), Italy

Poster Board 83

Timepix4 and particle dataset

Timepix4 is a **hybrid pixel detector readout** ASIC developed by the **Medipix4 Collaboration** (CERN).

It consists of a **matrix of ~230k pixels** with 55 µm pitch. Each can measure **time-of-arrival** and **time-over-threshold** when hit.

Natural radioactivity dataset acquired with Timepix4 bump-bonded to a **500 μm** thick Silicon sensor.

Dataset size: 4000 Clusters

Poster Board 83

Muon

Network structure and performance

Improving Two-Neutron Detection Efficiency on the NEBULA Detector using XGBoost Algorithm

Y. Li^{1,2}, Z. Yang³, Y. Kubota¹, T. Uesaka¹

(On behalf of SAMURAI18 collaboration)

¹ RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama, Japan
 ² Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
 ³ School of Physics, Peking University, Beijing, China

Background: multi-neutron detection is very important in nuclear physics

 \triangleright

 \succ

- In the field of nuclear physics, **multi-neutron detection** plays a critical role in revealing specific nuclear properties around neutron drip line
 - > Neutron drip line: The boundary beyond which atomic nuclei are unbound
 - Invariant method: All decay products are required

٠

Multi-neutron decay: Many drip line nuclei or resonances have more than one decay neutron

Four-neutron resonance states ^[1]

First observation of ²⁸O^[2]

Duer, M., Aumann, T. et al. Nature 606, 678–682 (2022).
 Kondo, Y., Achouri et al. Nature 620, 965–970 (2023).

CrossTalk events and XGBoost method

> Two-neutron Efficiency curve

• Within a smaller relative energy range, the detection efficiency for two-neutron is significantly improved.

6

RIKEN

• This performance is very helpful for enhancing the detection of multi neutrons.

CrossTalk

Two-

neutron

Different numbers of features

- Using the same number of features as conventional methods, XGBoost methods do not have obvious advantages.
 After adding other features including relative energy.
- After adding other features including relative energy, XGBoost demonstrates its ability to classify in high-dimensional spaces..

Leaf node

(The classification mark score)