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Dark matter science in Euclid

Now: the first 100s of lenses
+ First dark substructure detections
+ Measuring multipoles in large lens sample

+ 100s of non-detections would be in tension
with CDM

Soon: the first 1000 lenses and beyond

+ First constraints on f 1

+ Constraints on LOS mass function
+ ML sensitivity mapping at large scales
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Weak supervision for quark/gluon
tagging in CMS Open Data  (roster #1)

Ayodele Ore

In collaboration with Matthew J. Dolan and John Gargalionis



Weakly-supervised quark/gluon tagging
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Our study: How do models rank on real data?

1. Estimate mixture fractions 2. Train TopicFlow
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A fast convolutional neural
network for online particle
track recognition

e

N.V. Biesuz?, R. Bolzonellal?, P. Cardarelli?, E. Calore?,
V. Cavallinil? M. Fiorinil?, S.F. Schifanol? R. Zesel

1 - University of Ferrara, ltaly
2 - Istituto Nazionale di Fisica Nucleare (INEN), Italy
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Timepixémfd particle dataset e

pixels with 55 um pitch. Each can . . - .
measure time-of-arrival and

time-over-threshold when hit. Photon Alpha Electron

Natural radioactivity dataset
acquired with Timepix4
bump-bonded to a 500 um

Timepix4 is a hybrid pixel detector
readout ASIC developed by the
Medipix4 Collaboration (CERN).

It consists of a matrix of ~230k

thick Silicon sensor.

Dataset size: 4000 Clusters Muon

WA



Network structure and performance
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Improving Two-Neutron Detection Efficiency on
the NEBULA Detector using XGBoost Algorithm
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@ Background: multi-neutron detection is very important in nuclear physics

RIMEN

Proton

Neutron number

In the field of nuclear physics, multi-neutron detection plays a critical role in revealing
specific nuclear properties around neutron drip line

» Neutron drip line: The boundary beyond which atomic nuclei are unbound
» Invariant method: All decay products are required

» Multi-neutron decay: Many drip line nuclei or resonances have more than one

decay neutron
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1) Duer, M., Aumann, T. et al. Nature 606, 678682 (2022).
2) Kondo, Y., Achouri et al. Nature 620, 965-970 (2023).



P. CrossTalk events and XGBoost method
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