## **Flavour Tagging with Graph Neural Networks** with the ATLAS experiment

Waltteri Leinonen on behalf of the ATLAS Collaboration





Radboud Universiteit

**EuCAIF conference** 2024

## **Physics-informed GNN**

<u>GN1</u> and <u>GN2</u> are ATLAS's state-of-the-art low-level *b***\_tagging** and **boosted Higgs tagging** architectures.

- Physics inspired tagging with auxiliary tasks :  $L_{total} = L_{jet} + \alpha L_{vertex} + \beta L_{track}$ 
  - Interpretable model outputs through vertexing and track tagging
- Massive performance upgrade
  - Many-fold higher background rejection  $\rightarrow$  Higher tagging efficiency
- Flexible architecture, suitable for general tagging tasks
  - **Boosted Higgs**  $\rightarrow b\overline{b}/c\overline{c}$  tagging used in precision measurements
    - Top tagging folded into the same architecture
  - Unique challenges in producing mass-decorrelated tagger



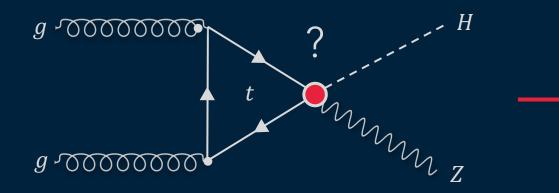




# Towards the First Time Measurement of $gg \rightarrow ZH$ at the LHC Using Transformer Networks

<u>Geoffrey Gilles</u>, Wouter Verkerke, Marcel Vreeswijk

Extract New Physics Contributions from the Challenging  $gg \rightarrow ZH$  process



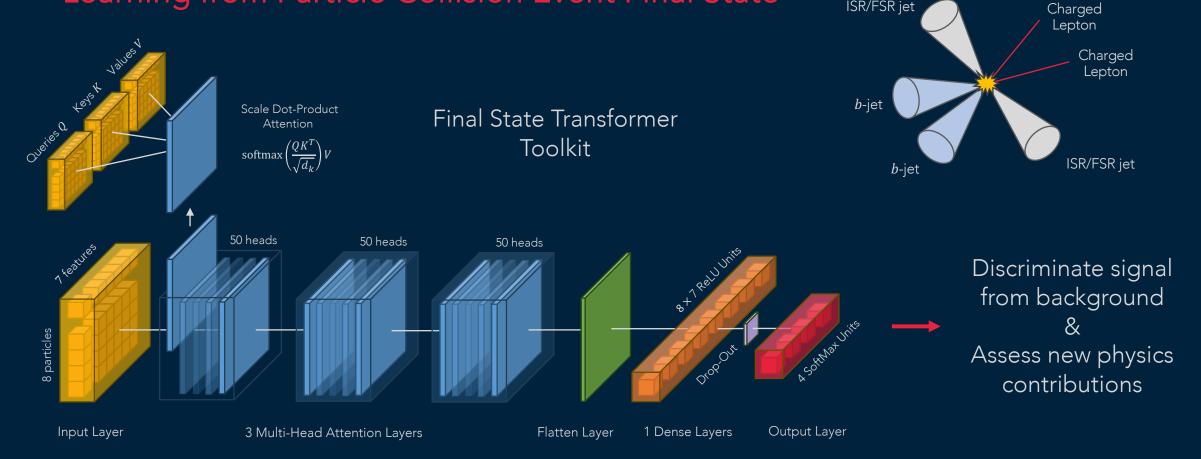
Simulation Based Inference empowered by Transformer network



## Towards the First Time Measurement of $gg \rightarrow ZH$ at the LHC Using Transformer Networks

ISR/FSR iet

### Learning from Particle Collision Event Final State

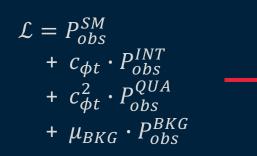


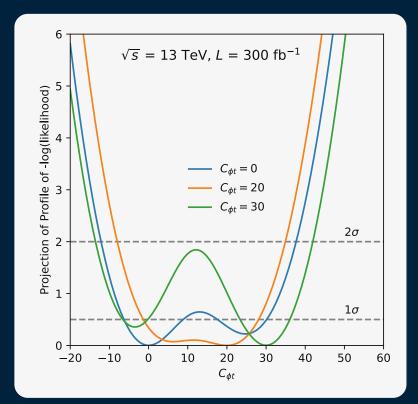


## Towards the First Time Measurement of $gg \rightarrow ZH$ at the LHC Using Transformer Networks

## **Exploring Simulation Based Inference**

Construct likelihood function based on Transformer output probabilities





Capture intricacies of new physics interaction and detector responses in unprecedented details



Towards the First Time Measurement of  $gg \rightarrow ZH$  at the LHC Using Transformer Networks

## Want to see the full story? Visit my poster for in-depth findings and analysis!



UNIVERSITÄT

HEIDELBERG

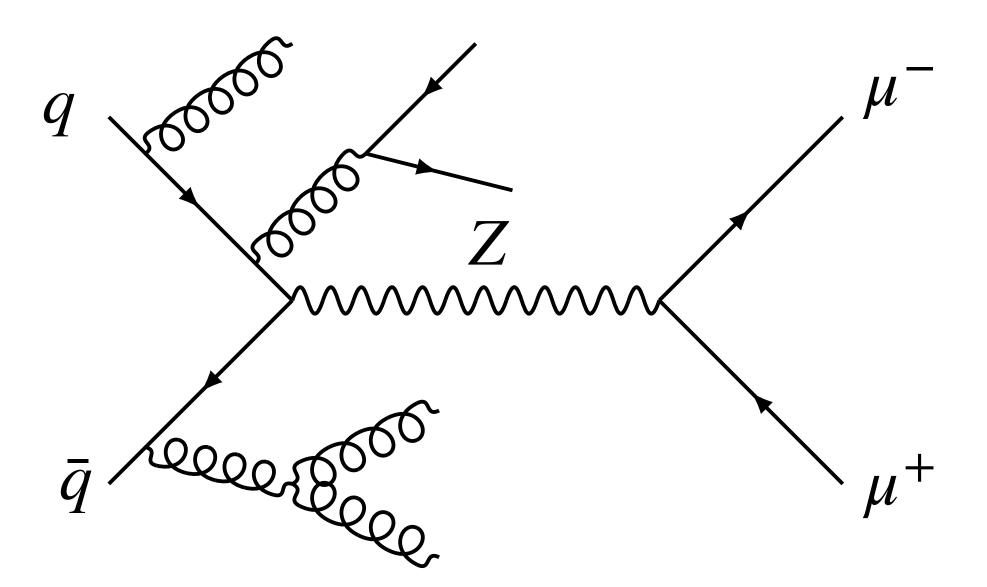
ZUKUNFT SEIT 1386 LHC Event Generation with JetGPT

## **Physics problem**



- Fast generation of LHC events
- Learn challenging correlations to percent-level
- Transfer knowledge from cheap low-multiplicity

events to expensive high-multiplicity events

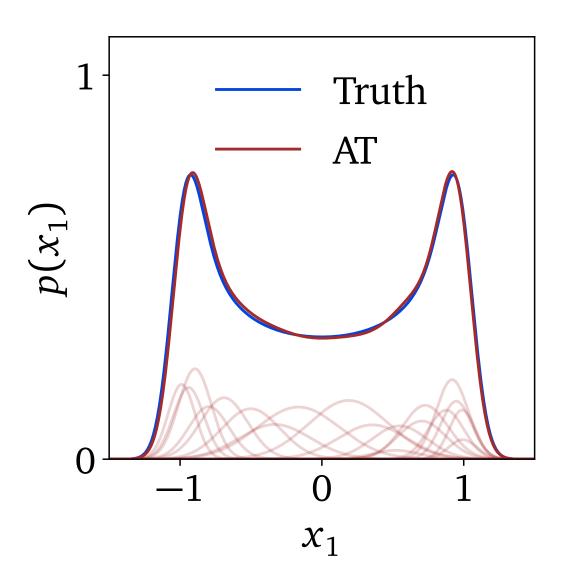


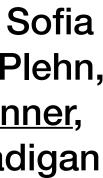
Anja Butter, Nathan Hütsch, Sofia Palacios Schweitzer, Tilman Plehn, Peter Sorrenson, Jonas Spinner, Nathanael Ediger, Maeve Madigan Heidelberg University

# **ML** solution

- Autoregressive transformer
- Gaussian Mixture Model likelihood
- Neural classifier to locate and reweight

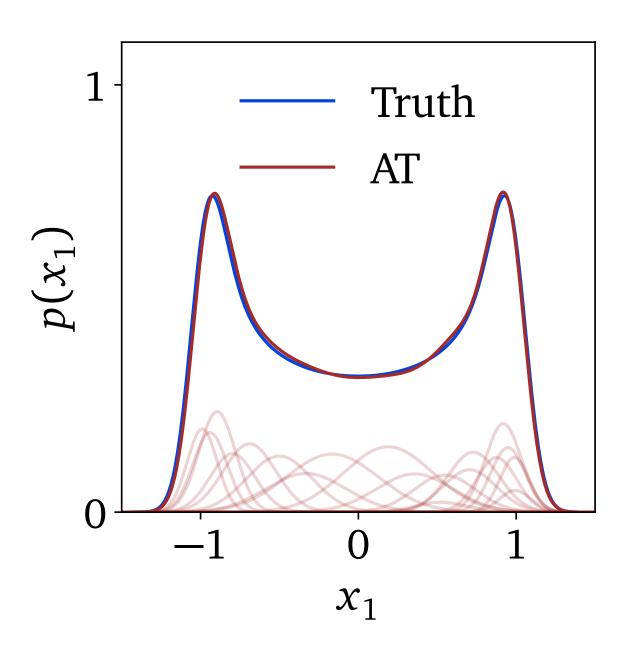
remaining discrepancies





## **ML** solution

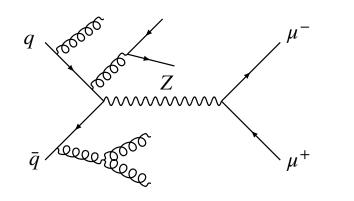
- Autoregressive transformer
- Gaussian Mixture Model likelihood
- Neural classifier to locate and reweight remaining discrepancies

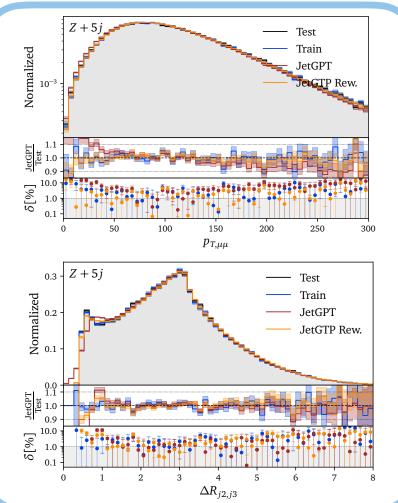


## LHC Event Generation with JetGPT

#### LHC Event Generation

- Fast generation of LHC events
- Learn challenging correlations to percent-level
- Transfer knowledge from cheap low-multiplicity events to expensive high-multiplicity events





#### Results

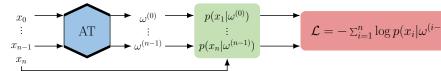
- Joint training on different multiplicities enhances performance and allows knowledge transfer
- · Autoregressive ordering gives a powerful handle to control which features the model should focus on
- · Neural classifiers to locate and reweight remaining discrepancies

#### Autoregressive Transformer Autoregressive Gaussian Mixture Model

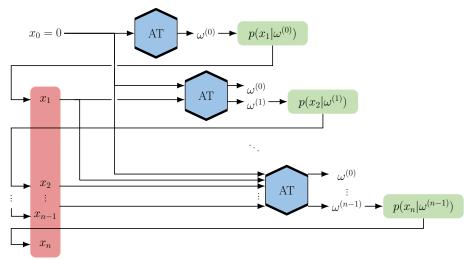
$$p(x_1, x_2, \dots x_n) = p(x_1)p(x_2 | x_1) \cdots p(x_n | x_{n-1})$$
  
=  $p(x_1 | \omega^{(0)})p(x_2 | \omega^{(1)}) \cdots p(x_n | \omega^{(n-1)})$ 

$$p(x_{i+1} | \omega^{(i)}) = \sum_{j=1}^{i} w_j^{(i)} \mathcal{N}(x_{i+1} | \mu_j^{(i)}, \sigma_j^{(i)}) \qquad \omega^{(i)}$$

Training: Parallelised density estimation

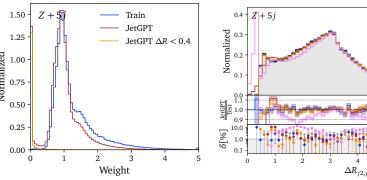


· Generation: Autoregressive sampling from onedimensional distributions



#### **Classifier Control**

- · Neural classifiers approximate the likelihood ratio
- Locate discrepancies: Likelihood ratio as test statistic
- Reweight discrepancies: Likelihood ratio as weighting factor



Jet Diffusion versus JetGPT - Modern Networks for the LHC arxiv:2305.10475 [hep-ph] Anja Butter, Nathan Hütsch, Sofia Palacios Schweitzer, Tilman Plehn, Peter Sorrenson, Jonas Spinner, Nathanael Ediger, Maeve Madigan Universität Heidelberg

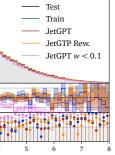


Federal Ministry of Education and Research



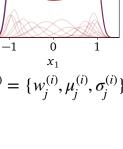












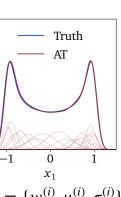




Image source: CERN

# Task: Reconstruct tracks from 3D point cloud

# Task: Reconstruct tracks from 3D point cloud

## Approach: Transformer-inspired models

# Transformer-inspired ML models for particle track reconstruction

Yue Zhao

High performance machine learning group, SURF, the Netherlands

yue.zhao@surf.nl