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Physics-informed GNN
GN1 and GN2 are ATLAS’s state-of-the-art low-level b-tagging and boosted Higgs tagging 
architectures.

• Physics inspired tagging with auxiliary tasks : 𝑳𝒕𝒐𝒕𝒂𝒍 = 𝑳𝒋𝒆𝒕 + 	𝜶𝑳𝒗𝒆𝒓𝒕𝒆𝒙 + 𝜷𝑳𝒕𝒓𝒂𝒄𝒌
• Interpretable model outputs through vertexing and track tagging

• Massive performance upgrade
• Many-fold higher background rejection → Higher tagging efficiency  

• Flexible architecture, suitable for general tagging tasks
• Boosted Higgs	→ 𝒃$𝒃/𝒄'𝒄 tagging used in precision measurements

• Top tagging folded into the same architecture
• Unique challenges in producing mass-decorrelated tagger
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? Simulation Based Inference 
empowered by

 Transformer network 

Extract New Physics Contributions from the Challenging 𝑔𝑔 → 𝑍𝐻 process   



Learning from Particle Collision Event Final State

Discriminate signal 
from background 

& 
Assess new physics 

contributions   

Towards the First Time Measurement of 
𝑔𝑔 → 𝑍𝐻 at the LHC Using Transformer Networks 
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Exploring Simulation Based Inference 
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Construct likelihood function 
based on Transformer 
output probabilities 

Capture intricacies of 
new physics interaction 
and detector responses 

in unprecedented details



Want to see the full story? 
Visit my poster for in-depth findings and analysis!
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LHC Event Generation with JetGPT
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• Fast generation of LHC events


• Learn challenging correlations to percent-level 

• Transfer knowledge from cheap low-multiplicity 

events to expensive high-multiplicity events

Physics problem ML solution
• Autoregressive transformer 

• Gaussian Mixture Model likelihood


• Neural classifier to locate and reweight  

remaining discrepancies
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• Fast generation of LHC events

• Learn challenging correlations to percent-level 

• Transfer knowledge from cheap low-multiplicity events 

to expensive high-multiplicity events

LHC Event Generation Autoregressive Transformer
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LHC Event Generation with JetGPT
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• Training: Parallelised density estimation

• Generation: Autoregressive sampling from one-

dimensional distributions

• Autoregressive Gaussian Mixture Model
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Results
• Joint training on different multiplicities enhances 

performance and allows knowledge transfer

• Autoregressive ordering gives a powerful handle to 

control which features the model should focus on

• Neural classifiers to locate and reweight remaining 

discrepancies

Classifier Control
• Neural classifiers approximate the likelihood ratio

• Locate discrepancies: Likelihood ratio as test statistic

• Reweight discrepancies: Likelihood ratio as weighting 

factor
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Jet Diffusion versus JetGPT - Modern Networks for the LHC 
arxiv:2305.10475 [hep-ph] 
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ML solution
• Autoregressive transformer 

• Gaussian Mixture Model likelihood


• Neural classifier to locate and reweight  

remaining discrepancies
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Image source: CERN
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Task:
Reconstruct tracks

from 3D point cloud
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Task:
Reconstruct tracks

from 3D point cloud
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Approach:
Transformer-inspired models



Transformer-inspired 
ML models for 

particle track reconstruction
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