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Learning the ‘Match’ Manifold to Accelerate Template Bank Generation
Introducing LearningMatch and TemplateGeNN...

Susanna Green, Andrew Lundgren, Xan Morice-Atkinson

LearningMatch: The Aim

.

: Figure 1: The aim of LearningMatch is to learn the mathematical
. relationship between the template parameters (specifically the
/ mass and aligned spin of the black holes) and the ‘match’.
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TemplateGeNN: The Results
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Figure 2: Results from PyCBC template bank verifier.
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[ Simulations are crucial for High Energy Physics experiments
i Detailed Simulation is computationally very expensive

i Detailed Simulation not scale for the future experiment demands

M. Barbetti et al. 30.05.2024
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Viable solutions?

Poster loc:

#93

B Renouncing to increase statistics — lower demand

i Developing faster options for simulation — at LHCb, Lamarr

[ Generation
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Bound-state
Quantum Electro Dynamics
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Astrophysics SI-Units
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Micro-Calorimeters

Bound-state
Quantum Electro Dynamics
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Astrophysics SI-Units
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single particle energies «
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High sensitivity...
... also to noise

Signal processing:

Analog
01 float get_e

02 {

04  for ( uin

05 { \
06 float v

o7 mwd_maf Compensate

artifacts
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Z*—ﬂ}—*i = Optimization of many
HI—— @ parameters / pixel

% {0 @4k = Future: More Pixels
® — ! > 1000 px



High sensitivity...
... also to noise

Solution:

Signal processing: o _
Artificial Intelligence?

Parameter optimization
Signal characterization
1D temporal analysis

Analog
01 float get_e

02 {
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artifacts

—— Optimization of many
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%8 8Ll = Future: More Pixels
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= Lots of potential!



High sensitivity...
... also to noise

Solution:

Signal processing: o _
Artificial Intelligence?

Analog

Parameter optimization
Signal characterization
1D temporal analysis
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Utilizing Artificial Intelligence Technologies for the Enhancement
of X-ray Spectroscopy with Metallic-Magnetic Calorimeters (MMC)

Weber ™, D Hengstler %, A Flaischmann %, €
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Outstanding properties associated with MMCs [1,2,3]:

- Fast signal rise time up to 1 = 100 ns
- High energy resolution AE ..., = 1.6 &V @ 6 keV/
- Excellent linearity AF / £ < 5.5% @ 60 ke

Several successful
benchmark campaigns

anion trap [4,5,8]

- Measurement of Ka
line-splitting in U=* at

.. with 2 transition Analog = Digital signal processing

MMC is susceptible to environmental changes...
-.vibrations, magnetic flux, etc. = corrections needed

o magnetameter CRYRING of FAIR [7]
L + Developed within SPARC collaboration: maXs
N
[ cratenges or g s
B . g .
However: Best performance is only achievable ... - H Requires multitude of numerical values and

mmeg hardware settings to be optimized

* § ' partal automation but several manual steps
o involved for individual pixels
18 Artificiof

Eurnpean &1 for Fundsmental P erenes [EUCAIFCon 2024)

Developmant of a complex signal analysis framework *108 Future: From few to many pixels... _/"'Nl"yam-v
Test and improvement through experiments [s] = 1868 = Setup 'by hand' is no longer feasible —
\
How could A1 be involved?
Hardware First steps: Full signal analysis = Extraction of pulse amplitude
- Auto-tuning of read-out SQUID electronics Setup:
Goal: Use Feedback between operation parameters - Synthesize MMC detector pulses with known parameters
and signal quality to improve the performance — Perform RL on 1D temporal signal processing network [
= Reinforcement Learning (RL) I Ltagert a1
Software o
_ L2
- Simple signal characterization =
Goal: Automate the rejection of false-positives
and improvement of trigger timing capabilities
= Clossification
- Numerical parameter optimization Use n layers of a convolutional neuronal network (CNN)
Goal Automate and improve the followed by m layers of a simple perceptron = Amplitude
optimization of the finite response |, - ‘ N -
filter [FIR) used for signal analysis Under optimal conditions
) . FIR-filter qutperforms Al in
= Reinforcement Learning . reading energy from pulses
X X o + However: Alis less effected
- Full signal anatysis " by jitter of pulse timings
Train & neural network on the specific MIMC omer 5 e T 5 | Next: Optimize the mode!
detector pulse characteristics batter) N
Goai: Extract relevant measurements directly
Bonus: Use NN to synthesis MMC pulses for testing
= 10 temporal analysis
. .
SPAE == @
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Marc Oliver Herdrich
Helmholtz-Institute Jena
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Quark/Gluon Discrimination and Top Tagging

with Dual Attention Transformer
— EuCAIFCon24 —

Daohan Wang
Institute of High Energy Physics (HEPHY), Austrian Academy of Sciences (OeAW)

April 30, 2024

Daohan Wang (HEPHY Vienna) Dual Attention Transformer
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Dual Attention Mechanism

A(Q K, V) = Concat(heady, .. ., heath )

K;
1 T

Uy |V

Q;( )T 02|V

Vi

A(Qj,K;, V;) = softmax |:

where head; = softmax [ +Up|V;

Particle Attention Map PxP. Particle Feature Attention Map CxC

Transpose

Particle interaction matrix Uy : Channel interaction matrix Up:
Straightforward ratios of
{By, pry. Zpry, LEr, &7, A, AR, PID}

where Az, A and AR correspond to
the transverse momentum weighted
sum of the A7, Ap, AR of all the
constituent particles inside the input
jet, respectively. Here Az, A¢ and AR
refer to the distances in the 17 — ¢ space
between each constituent particle and
the input jet.

AR = \/(ya — yp)? + (ba — )2,

kp = min(py 4, pr,p)8,

z=min(py 4,p7p)/ (PTa +PT )

m? = (Ea +Ey)? ~ lIpa + ppl1%

~-+r|+-—|%|

Apr = P10~ PTp!

Daohan W.
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Model Architecture

@ Input features: log E, log pr, %, %, Ay A, AR,PID of leading 100 particles.
@ The particle attention module (P x P attention map) and the channel attention module (C x C attention map) are stacked while
maintaining a consistent feature dimension of N = 64 and they can complement each other.

@ Particle - Dual Attention Transformer: 2 Feature Extractor (1 EdgeConv + 3 Conv2D + 1 AvgPool) + 2 Particle Attention modules + 2
Channel Attention modules + 1D CNN + MLP.

Particle Channel Particle Channel
Interaction Interaction Interaction Interaction
Embedding Embedding Embedding Embedding

Feature
Particle Channel Particle Channel . '
Extachoy Self Attention Rl Self Attention Self Attention [Pl Self Attention fa'”/Va“da“OA
X X Chunk Wise
Average Delete _
Pooling (S Memory
CNN .
256 Concatenation
[e2) "
X

0, x1, 22, x3, x4

Chunk Loading Strategy

Daohan V / Dual Att
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