FlashSim: End-to-End simulation with flow matching
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We propose an end-to-end approach for faster

simulations Do Smuaton
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Main idea: going directly from

the generator output objects to }mé —) ‘

the high level analysis objects 7-

(jets, muons ...)! - ) o 4

We want something: end-to-end conventional

e Fast(er): reached ~kHz!

e Not analysis specific
Depending on Gen (not just
a generic event but the
event)
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Continuous Normalizing Flows
are the backbone of our approach!

We learn an invertible
transformation, taking us
from data x to noise z

Once f has been found we
can invert it, start from
noise and sample new data
from the unknown PDF!
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https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482

Results are convincing

Simulation speed per object is around 10
kHz.
Our results accurately reproduce the Full
Simulation data of the CMS Experiment,
on both training and unseen processes,
for:

e I1-ddistributions;

e correlations between the variables;

e different physical processes;

e analysis-level plots.

For more:
Poster Session B, Thursday, Loc 70
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refs: https://cds.cern.ch/record/2858890, and
https://arxiv.org/abs/2402.13684
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Motivation and idea

* LHCb relies on the Ring Imaging Cherenkov (RICH) detector system for the charged hadron identification (PID) in a
wide momentum range (2 - 100 GeV/c)

« The PID was one of the dominant systematics int the measurement of cross-sections with fixed-target datasets in LHCb:
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« This motivated the development of a novel approach to the modelling of particle identification classifiers using
machine-learning techniques

- Explicitly model the marginal probability density function (pdf) of the PID classifiers > must depend on the
experimental features 6

« Extract the marginal pdf using a Gaussian Mixture Model, whose parameters are predicted by Multi Layer
Perceptrons trained on calibration data

 Model each hadron type h ( , K and p) PID response independently using the appropriate control modes
30/04/2024 2



Model and Validation N exp(-4x,— 1, O Z740) ()~ p

« In the bidimensional PID space the pdf x is defined as: X, ~ > ajn6) —
j=1 2n\/det(2 in(©)

G

Training on proton-Neon sample
« The learning process of the networks relies on the minimization of the loss function, defined as the negative log-likelihood
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* Training performed with mini-batches gradient descent with a user-defined number of Gaussians and NN structure
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Paper : https://iopscience.iop.org/article/10.1088/1748-0221/17/02/P02018/meta



Model and Validation

Validation on fixed-target datasets

« Marginal-pdf prediction validated for the same training dataset and then applied to two independent lower-statistics samples of

proton-Helium and proton-Argon collisions
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- significant modifications of the kinematic distributions of the produced O b
particles oE
« different events multiplicity and the detector occupancy o0E
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Background

Within the Compact Muon Solenoid (CMS) P b
Collaboration, various Deep Neural Networks (DNNs) 9 BEEEE) H
and Machine Learning (MLs) approaches have been 7 _
employed to investigate the production of a new x b
massive particle that undergoes decay into Higgs Boson A X . - Vi
pairs (HH) which further decay into a pair of b-quarks AU 4 A _
and a pair of tau leptons and discriminate the HH signal g L0000 ) H / U T
from the backgrounds. \d 1
\ ) Vi + MET
However, the mentioned models which are employed U= { v
are often complex and considered black boxes, making ( f -
€ 2

it challenging to interpret how the task was
performed and the data analysis review process. Fig. |: Decay process outline

Aim of the work

This work aimed therefore to provide a better understanding of how the models work by validating an established Explainable Artificial
Intelligence (XAI) technique such as SHapley Additive exPlanations (SHAP) [I], aiming for more interpretable, trustworthy models and
predictions.

Mariagrazia Monteleone, MSc




Workflow

A data pre-processing pipeline was established to select important features Recursive Feature Elimination based on SHAP values.This led to fine-
tuning XGBoost for a classification task, whose features were compared with PCA results for validation and interpretation.
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Fig. 2: PCA data visualization Fig. 3:SHAP value, impact on model output
Conclusions

The results obtained with SHAP and PCA agreed on the importance of some of the features , the combination of the two techniques confirmed
the reliability of SHAP as an established tool, but also the potential of High Energy Physics (HEP) domain as a new technical validation tool.

Mariagrazia Monteleone, MSc




Understanding galaxy clusters with
Contrastive Learning

Urmila Chadayammuri
EUCAIF 2024 | Amsterdam



Clusters are very diverse

They have a wide variety of core thermodynamic profiles

ID 18929622 ID 6412656 ID 252455
l0g(Ms500c/Mo) = 14.3 7z=0 10g(M500c/Mo) =14.9 z=0 10g9(Ms590c/Mo) = 15.3 2z=0
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Clusters are very diverse

They have a wide variety of histories of AGN activity, in different phases
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Clusters are very diverse

They can be in very different stages of merging

HalolD 3758330 (#25) HalolD 3863281 (#26) HalolD 3960854 (#27) HalolD 4054274 (#28)

? » . . | .

HalolD 5348819 (#44) HalolD 5432141 (#45) HalolD 5524229 (#46) HalolD 5608717 (#49) N e I SO n + 2024




Clusters are very diverse

We try to characterise them in scalars or azimuthally averaged profiles
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So what can we learn from cluster images?

2. We can sort the cluster images by similarity and identify cluster populations in
image space
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So what can we learn from cluster images?

2. The image-based sorting retains a lot of information about cluster mass,

feedback and merger history -_even after correcting for halo mass
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Understanding correlations between feedback, mergers,

and cluster cores

2. The image-based sorting retains a
lot of information about cluster
mass, feedback and merger history -
even after correcting for halo mass

The median values of feedback,
merger and cool-coreness metrics
are more correlated with each other
in similar regions of the
representation space (bottom) than
without image-based sorting (above)
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