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Data and MC Mixture

● Around 100 variables from tracker, TOF and TRD 

● MC simulations and AMS-02 ISS experimental data with tight 

manual selections applied have been mixed to create train 

(equal abundance of all nuclei) and test (natural abundance of 

nuclei) data sets

● For each nuclei species 3 different classes are created

○ Fragmented above L1

○ Fragmented between L1 and L2

○ Non-fragmented and those which fragment between L2 

and L8

● Benchmarking with ML algorithms: Multi-layered perception, 

Convolutional Neural Networks, Transformers, and XGBoost

● XGBoost showed better performance because of the tabular 

nature of the data. source:                 
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Nuclei identification with tracker, TOF



Comparison of fragments in the selections

Manually optimized selection XGBoost optimized selection

● The manually selected Fluorine candidates have contamination from heavier nuclei

● For ML selected Fluorine the contamination mostly comes from the neighboring Ne 
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Model deployment on AMS-02 ISS data

● Test data, applied tight standard 

selection on AMS-02 experimental 

data from ISS, is taken here

● ML selections are applied and the 

performance of hypercube selection 

and ML selection is compared here
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Summary
● ML performance was tested for nuclei selection of the AMS-02 simulated data and ISS data with tight selections applied

● Comparison between standard AMS-02 standard selection and ML model for Fluorine

○ At the same efficiency of standard selection, higher purity was achieved with ML model 

○ ML based selection can be varied easily and is non-linear

Outlook
● Efficiency correction for selection

● Systematic evaluation 

Poster on 
Thursday



Back up
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Bin wise visualization
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https://doi.org/https://doi.org/10
.1016/j.nuclphysa.2005.01.024
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What: Can a transformer model generate a 
Lagrangian given a set of quantum fields?

Eliel Camargo-Molina  
Yong Sheng Koay 
Rikard Enberg 
Stefano Moretti

Generating Lagrangians 
for particle theories 



How: Train a BART model from scratch for a seq2seq task with 
carefully constructed dataset and a good tokenization

Tokens

Seq2seq

 * 2309.15783 [Harlander, Schaaf]

 *



How: Train a BART model from scratch for a seq-to-seq task with 
carefully constructed dataset and a good tokenization

Distribution of quantum 
numbers matters!

Some tokenizations are bad 
(e.g. too long, too loosy …)

~110M pars

~350M pars

~1B pars

Errors because of 
tokenization and length

Mostly scalars and some 
fermions Larger datasets

Three strategies for distribution over 
quantum numbers

More fields

37K Lagrangians

17K Lagrangians

77%  
eval dataset

75%  
eval dataset

NEXT STEP



Why:

Foundational Model for 
cosmo+particle physics 
phenomenology 



LORENTZ-EQUIVARIANT GEOMETRIC 
ALGEBRA TRANSFORMERS FOR 

HIGH-ENERGY PHYSICS

Víctor Bresó Pla

In collaboration with Jonas 
Spinner, Johann Brehmer, Pim de 

Haan, Tilman Plehn & Jesse Thaler 



MACHINE LEARNING APPROACHES FOR HIGH ENERGY PHYSICS

Network output quality and efficiency

Out of the box 

model

Symmetry 

awareness

Transformer 

backbone 



Introducing the Lorentz Geometric 
Algebra Transformer (L-GATr)

Main results:
1. We achieve state of the art 

performance for multiple collider 
physics tasks 

2. L-GATr can learn the features of 
multiple processes 
simulatenously   

3. L-GATr is faster and more memory 
efficient than other equivariant 
baselines



Sascha Caron (Nikhef, Radboud U), José Enrique García Navarro (IFIC, CSIC-UV), María Moreno 
Llácer (IFIC, CSIC-UV),  Polina Moskvitinaa (Nikhef, Radboud U), Mats Rovers (Radboud U., 
Nikhef), Adrián Rubio Jiménez (IFIC, CSIC-UV), Roberto Ruiz de Austri (IFIC, CSIC-UV), 
Zhongyi Zhang (Bonn U.).
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Motivation

§ The most powerful architectures for supervised classification learn the physical information more efficiently. 

§ But… how can we turn them into anomaly detectors and how good are they?
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Strategy

§ Adaptation of 2-3 different classifier architectures with 3 methods to detect anomalies (8 models).

§ No network optimisation (or minimal) was performed to avoid biases.

DarkMachines dataset

§ Open data: Zenodo link to dataset from anomaly score challenge.

§ Event generation:  proton-proton collisions at 13 TeV .

§ Detector simulation: simplified card for ATLAS detector at CERN.

§ Reconstructed particles (objects): jets, b-tagged jets, charged leptons, photons.

§ Low level variables: object type, the four-momentum of the objects and the 
missing transverse momentum of the event.

https://zenodo.org/record/3961917
https://scipost.org/10.21468/SciPostPhys.12.1.043


3

Multi-Layer Perceptron (MLP) Particle Transformer (ParT)
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Deep Support Vector Data Description (dSVDD)
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Deep Robust One-Class Classification (DROCC)

Discriminant distorsion detection (DDD)

ParT+ SM couplings

No pairwise interactions

§ Pairwise interactions
§ ln(m2

ij)
§ ln(∆Rij)
§ Physical information from 

Standard Model: couplings.

• Add an output layer with certain
dimensions. 

• Training: minimise distance to a centre in 
the hypersphere (anomaly score). 

• Outliers are considered anomalies.

• Make ensemble for different dimensions.

• Background is assumed to lie in a low-
dimensional manifold.

• Anomalous background events are generated 
and their location in the manifold is searched 
with an adversarial training. 

• Weakly supervised implementation

• New technique developed for this study.

• Anomalies look like distorted background.

• Distorted training dataset is created:
• Smearing kinematic variables with a gaussian.

• Adding or removing objects.

• Train: discriminate distorted bkg vs bkg.

• Models with AUCs ~ 0.7-0.8 are picked up for 
testing on signals. Ensemble was made.

https://arxiv.org/abs/2211.05143

Developed 
by this group

?

http://proceedings.mlr.press/v80/ruff18a/ruff18a.pdf
https://arxiv.org/pdf/2002.12718.pdf
https://arxiv.org/pdf/2106.10164
https://arxiv.org/abs/2211.05143
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§ Shown that we can take a supervised classifier and 
transform it into a (good) anomaly detector.

§ The best classifiers are -on average- better 
anomaly detectors: ParT+SM in this case. 

§ Similar performances among the 3 techniques. 
Compatible with anomaly score challenge.

§ A recommendation could be to use dSVDD and DDD 
in combination (fully unsupervised).

§ The new method DDD discriminates between data 
with and without distortions. This opens interesting 
future research directions.

§ A more detailed recipe will be found in the paper 
(very soon in arXiv).
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§ Channel 1 (214k SM and 38k BSM):
• HT ≥ 600 GeV .
• ETmiss ≥ 200 GeV.
• ETmiss/HT≥ 0.2 .
• At least 4 (b)-jets with pT > 50 GeV.
• 1 (b)-jet with pT > 200 GeV.

§ Channel 2a (20k SM and 11k BSM):
• ETmiss > 50 GeV.
• Nlep >= 3 (where pTlep> 15 GeV).

§ Channel 2b (340k SM and 90k BSM):
• ETmiss > 50 GeV.
• Nlep >= 2 (where pTlep> 15 GeV).
• HT > 50 GeV.

§ Channel 3 (8.5M SM and 1M BSM):
• ETmiss > 100 GeV.
• HT > 600 GeV.
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