Machine-learning analysis of cosmic-ray nuclei data from the AMS-02 experiment on the International Space Station (ISS)

Shahid Khan

~7000 kg AMS-02 on the ISS

AMS-02 detector components and their use cases₁ for the identification of various charges

Data and MC Mixture

- Around 100 variables from tracker, TOF and TRD
- MC simulations and AMS-02 ISS experimental data with tight manual selections applied have been mixed to create train (equal abundance of all nuclei) and test (natural abundance of nuclei) data sets
- For each nuclei species 3 different classes are created
 - Fragmented above L1
 - Fragmented between L1 and L2
 - Non-fragmented and those which fragment between L2 and L8
- Benchmarking with ML algorithms: Multi-layered perception, Convolutional Neural Networks, Transformers, and XGBoost
- XGBoost showed better performance because of the tabular nature of the data. source:

Nuclei identification with tracker, TOF

Comparison of fragments in the selections

- The manually selected Fluorine candidates have contamination from heavier nuclei
- For ML selected Fluorine the contamination mostly comes from the neighboring Ne

Manually optimized selection

Model deployment on AMS-02 ISS data

- Test data, applied tight standard selection on AMS-02 experimental data from ISS, is taken here
- ML selections are applied and the performance of hypercube selection and ML selection is compared here

Summary

• ML performance was tested for nuclei selection of the AMS-02 simulated data and ISS data with tight selections applied

Outlook

- Comparison between standard AMS-02 standard selection and ML model for Fluorine
 - At the same efficiency of standard selection, higher purity was achieved with ML model
 - ML based selection can be varied easily and is non-linear

- Efficiency correction for selection
- Systematic evaluation

Poster on Thursday

Back up

Bin wise visualization

UNIVERSITET

Generating Lagrangians for particle theories

Can a transformer model generate a Lagrangian given a set of quantum fields?

SU(3) SU(2) U(1)

$$\begin{array}{c} \phi_{(3,2,0)} \\ \varphi_{(1,2,\frac{1}{2})} \\ \psi_{L} \\ \psi_{R} \\ \psi_{R} \\ (1,1,\frac{-1}{6}) \end{array}$$

Eliel Camargo-Molina Yong Sheng Koay **Rikard Enberg** Stefano Moretti

 $\mathcal{L} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) + (D_{\mu}\varphi)^{\dagger} (D^{\mu}\varphi)$ $+i\bar{\psi}_L\gamma^\mu D_\mu\psi_L + i\bar{\psi}_R\gamma^\mu D_\mu\psi_R$ $-\lambda_{\phi}(\phi^{\dagger}\phi)^2-\lambda_{arphi}(arphi^{\dagger}arphi)^2$ SU(2)SU(2) $-\lambda_1 \phi^{\dagger} \phi \, \varphi^{\dagger} \varphi - \lambda_2 \phi^{\dagger} \phi \, \varphi^{\dagger} \varphi$ $-y\varphi\bar{\psi}_L\psi_R+h.c.+\ldots$

Irain a BART model from scratch for a seq2seq task w carefully constructed dataset and a good tokenization

╉

Train a BART model from scratch for a seq2seq task with

* 2309.15783 [Harlander, Schaaf]

Train a BART model from scratch for a seq-to-seq task with carefully constructed dataset and a good tokenization

Distribution of quantum numbers matters!

Some tokenizations are bad (e.g. too long, too loosy ...)

Mostly scalars and some fermions

Errors because of tokenization and length **NEXT STEP** ~1B pars

37K Lagrangians ~350M pars

Larger datasets

Three strategies for distribution over quantum numbers

More fields

Foundational Model for cosmo+particle physics phenomenology

LORENTZ-EQUIVARIANT GEOMETRIC ALGEBRA TRANSFORMERS FOR HIGH-ENERGY PHYSICS

Víctor Bresó Pla

In collaboration with Jonas Spinner, Johann Brehmer, Pim de Haan, Tilman Plehn & Jesse Thaler

EucAlFCon 2024

MACHINE LEARNING APPROACHES FOR HIGH ENERGY PHYSICS

Network output quality and efficiency

Introducing the Lorentz Geometric Algebra Transformer (L-GATr)

- Main results:
 - We achieve state of the art performance for multiple collider physics tasks
 - 2. L-GATr can learn the features of **multiple processes simulatenously**
 - 3. L-GATr is **faster** and more **memory efficient** than other equivariant baselines

0						RI			
				RS		0			
	0			DE	C		OR	S	P

Sascha Caron (Nikhef, Radboud U), José Enrique García Navarro (IFIC, CSIC-UV), María Moreno Llácer (IFIC, CSIC-UV), Polina Moskvitinaa (Nikhef, Radboud U), Mats Rovers (Radboud U., Nikhef), **Adrián Rubio Jiménez (IFIC, CSIC-UV)**, Roberto Ruiz de Austri (IFIC, CSIC-UV), Zhongyi Zhang (Bonn U.).

UNIVERSITÄT BONN

Radboud University

> Vniver§itat DğValència

MOTIVATION AND STRATEGY

Motivation

- The most powerful architectures for supervised classification learn the physical information more efficiently.
- But... how can we turn them into anomaly detectors and how good are they?

Strategy

- Adaptation of 2-3 different classifier architectures with 3 methods to detect anomalies (8 models).
- No network optimisation (or minimal) was performed to avoid biases.

DarkMachines dataset

- <u>Open data</u>: Zenodo <u>link</u> to dataset from <u>anomaly score challenge</u>.
- <u>Event generation</u>: *proton-proton* collisions at 13 TeV .
- <u>Detector simulation</u>: simplified card for ATLAS detector at CERN.
- <u>Reconstructed particles (objects)</u>: jets, b-tagged jets, charged leptons, photons.

• <u>Low level variables</u>: object type, the four-momentum of the objects and the missing transverse momentum of the event.

Dark Machines

About News Events Projects Researchers White paper Mailinglist Contribute 🎔

The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider

T. Aarrestad^a M. van Beekveld^b M. Bona^c A. Boveia^e S. Caron^d J. Davies^c
A. De Simone^{f,g} C. Doglioni^h J. M. Duarteⁱ A. Farbin^j H. Gupta^k L. Hendriks^d
L. Heinrich^a J. Howarth^l P. Jawahar^{m,a} A. Jueidⁿ J. Lastow^h A. Leinweber^o
J. Mamuzic^p E. Merényi^q A. Morandini^r P. Moskvitina^d C. Nellist^d J. Ngadiuba^{s,t}
B. Ostdiek^{u,v} M. Pierini^a B. Ravina^l R. Ruiz de Austri^p S. Sekmen^w
M. Touranakou^{x,a} M. Vaškevičiūte^l R. Vilalta^y J.-R. Vlimant^t R. Verheyen^z
M. White^o E. Wulffth E. Wallin^h K.A. Wozniak^{a,a} Z. Zhang^d

ARCHITECTURES AND TECHNIQUES

Deep Support Vector Data Description (dSVDD)

- Add an output layer with certain dimensions.
- Training: minimise distance to a centre in the hypersphere (anomaly score).
- Outliers are considered anomalies.
- Make <u>ensemble</u> for different dimensions.

Deep Robust One-Class Classification (DROCC)

- Background is assumed to lie in a lowdimensional manifold.
- Anomalous background events are generated and their location in the manifold is searched with an adversarial training.

$$\sum_{i=1}^{n} [\ell(f_{\theta}(x_i), 1) + \mu \max_{\substack{\tilde{x}_i \in \\ N_i(r)}} \ell(f_{\theta}(\tilde{x}_i), -1)$$

Weakly supervised implementation

ParT+ SM couplings Pairwise interactions ln(m²_{ij}) ln(ΔR_{ij}) Physical information from Standard Model: couplings. Developed by this group

- New technique developed for this study.
- Anomalies look like distorted background.
- Distorted training dataset is created:
 - Smearing kinematic variables with a gaussian.
 - Adding or removing objects.
- Train: discriminate *distorted bkg* vs *bkg*.
- Models with AUCs ~ 0.7-0.8 are picked up for testing on signals. Ensemble was made.

RESULTS AND CONCLUSIONS

- Shown that we can take a supervised classifier and transform it into a (good) anomaly detector.
- The best classifiers are -on average- better anomaly detectors: ParT+SM in this case.
- Similar performances among the 3 techniques.
 Compatible with anomaly score challenge.
- A recommendation could be to use dSVDD and DDD in combination (fully unsupervised).
- The new method DDD discriminates between data with and without distortions. This opens interesting future research directions.
- A more detailed recipe will be found in the paper (very soon in arXiv).

BACK-UP

CHANNELS AND SIGNALS

- Channel 1 (214k SM and 38k BSM):
 - $H_T \ge 600 \text{ GeV}$.
 - E_{Tmiss} ≥ 200 GeV.
 - E_{Tmiss}/HT≥ 0.2 .
 - At least 4 (b)-jets with $p_T > 50$ GeV.
 - 1 (b)-jet with p_T > 200 GeV.
- Channel 2a (20k SM and 11k BSM):
 - E_{Tmiss} > 50 GeV.
 - $N_{lep} \ge 3$ (where $p_{Tlep} \ge 15$ GeV).
- Channel 2b (340k SM and 90k BSM):
 - E_{Tmiss} > 50 GeV.
 - $N_{lep} \ge 2$ (where $p_{Tlep} \ge 15$ GeV).
 - HT > 50 GeV.
- Channel 3 (8.5M SM and 1M BSM):
 - E_{Tmiss} > 100 GeV.
 - H_T > 600 GeV.

BSM process	Channel 1	Channel 2a	Channel 2b	Channel 3
$Z' + { m monojet}$	×	×		×
Z' + W/Z				×
$Z' + { m single top}$	×			×
Z' in lepton-violating $U(1)_{L_{\mu}-L_{\tau}}$		×	×	
R-SUSY stop-stop	×		×	×
R-SUSY squark-squark	×			×
SUSY gluino-gluino	×	×	×	×
SUSY stop-stop	×			×
SUSY squark-squark	×			×
SUSY chargino-neutralino		×	×	
SUSY chargino-chargino			×	

