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Pierre Auger Cosmic-Ray Observatory

Ultra-high energy cosmic rays
● measure cosmic-ray-induced air showers 

(10¹⁷ to >10²  eV)⁰
● investigate nature & origin of UHECRs

 unknown for more than 100 years

The Pierre Auger Observatory
● world’s largest cosmic ray observatory
● Size: 3000 km²→  15x size of Amsterdam
● hybrid detection of air showers

 1,660 water-Cherenkov detectors 100% duty cycle
 27 fluorescence telescopes

p

Measure signal traces

[1] The Pierre Auger Collaboration, NIM-A, 798 (2015) 172-213

http://www.jonas-glombitza.com/
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Mass Composition Studies using DNNs

● Xmax is estimator for primary mass
● Directly observed by fluorescence telescopes
● Reconstructed by DNN using detector traces
● Calibrated and crosschecked with telescopes

→ new insights in cosmic ray composition!

Would need to operate telescopes for 
>100 years to collect similar statistics
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Detector stations
[2] A. Aab (Pierre Auger Collaboration) et al., JINST 16 P07019 (2021)
[3] A. Aab (Pierre Auger Collaboration) et al., JINST 16 P07016 (2021)
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Machine Learning in the AugerPrime era
● Ongoing upgrade

 add radio antenna & plastic scintillator
➔ improved sensitivity

New detectors

→ promising potential to re-analyze previous data 
with improved sensitivity[4] A. Aab (Pierre Auger Collaboration) et al., ArXiv:1604.03637

[5] N. Langner on behalf of the Pierre Auger Collaboration, PoS(ICRC2023)371 
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Machine Learning Inference in ROOT 

● Input: trained ML model file
■ ONNX: Common standard for ML models
■ Tensorflow/Keras and PyTorch models  

(with reduced support than ONNX)
■ Since 6.32 support message passing GNNs 

from DeepMind’s Graph Nets
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● Output: generated C++ code 
■ Easily invokable directly from C++ (plug-and-use)
■ Minimal dependency (on BLAS only)
■ Can be compiled at run time using ROOT Cling 

JIT and can be used in Python. 

or 

SOFIE : System for Optimised Fast Inference code Emit



▶ Extended SOFIE functionality to produce GPU code using SYCL
// generate SYCL code internally
model.GenerateGPU();  
// write output header and data weight file
model.OutputGeneratedGPU(); 

GPU Extension of SOFIE
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model.hxx 
namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
   if (filename.empty()) filename = 
"Linear_event.dat";
   std::ifstream f;
   f.open(filename);
   // read weight data file
   …………………..
}
std::vector<float> infer(float* 
tensor_input1){

with SYCL code

#include “Model.hxx”

// create session class

TMVA_SOFIE_Model::Session 
ses(“model_weights.dat”);

//—- event loop

for (ievt = 0; ievt < N; ievt++) {

   // evaluate model: input is a C float array

   float * input = event[ievt].GetData();

   auto result = ses.infer(input);

Inference code needs to be linked 
against oneAPI MKL libraries and 
compiled using SYCL compiler

▶ Minimise overhead of data transfers between 
host and device

▶ Manage buffers efficiently, declaring them at 
the beginning

▶ Use libraries for GPU Offloading: GPU BLAS 
from Intel one API and PortBLAS for other GPUs

▶ Fuse operators when possible in a single kernel
▶ Replace conditional check with relational 

functions



SOFIE GNN Support 

▶ Since ROOT version 6.32 support inference of GNNs
● parsing available for GNNs built from DeepMind’s Graph Net library 
● supporting  a LHCb model for full event interpretation 

(arXiv:2304.08610)
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RModel_GNN

https://arxiv.org/abs/2304.08610


ONNX Supported Operators
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Operators implemented in ROOT CPU GPU

Perceptron: Gemm ✓ ✓

Activations: Relu, Selu, Sigmoid, Softmax, Tanh, LeakyRelu, Swish ✓ ✓

Convolution and Deconvolution  (1D, 2D and 3D) ✓ ✓

Pooling: MaxPool, AveragePool, GlobalAverage ✓ ✓

Recurrent: RNN, GRU, LSTM ✓ ✓

 Layer Unary operators: Neg, Exp, Sqrt, Reciprocal, Identity ✓ ✓

 Layer Binary operators: Add, Sum, Mul, Div ✓ ✓

Other Layer operators: Reshape, Flatten,  Transpose, Squeeze, 
Unsqueeze, Slice, Concat, Reduce, Gather ✓ ✓

  BatchNormalization, LayerNormalization ✓ ✓

Custom operator ✓

• current CPU  
support available  
in ROOT 6.30


• GPU/SYCL is 
implemented in a 
ROOT PR

https://github.com/root-project/root/pull/13550/


Benchmarking Time of Inference
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SOFIE

ONNXRuntime

Ubuntu 20.04 Intel 5000MHz (Batch Size = 1)

CPU event performance of SOFIE vs ONNXRuntime

GPU (SYCL) vs CPU performance
• using a Resnet model with  

varying batch size 

CPU time for GNN inference
• varying GNN size (node + edges) 



Summary

▶ SOFIE, fast and easy-to-use inference engine for Deep Learning models, is 
available in ROOT
● Can be easily integrated with other ROOT tools (RDataFrame ) for ML inference in 

end-user analysis
● Supporting several ONNX operators and also GNNs 
● A prototype implementation for GPU using SYCL has been developed 

● plan to extend to CUDA and/or ALPAKA following some interest by 
experiments to deploy in their GPU-based trigger system

▶ Future developments according to user needs and received feedback
● aim to support the latest production model of experiments (GNN and transformers)
● models used for fast simulations (GAN and VAE)
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Useful Links 
▶ Examples and tutorials are available in the tutorial/tmva directory

▶ C++ (TMVA_SOFIE_*.C) and Python examples (TMVA_SOFIE_*.py)

▶ Link to SOFIE code in current ROOT master in GitHub

▶ Example notebooks on using SOFIE: 
▶ https://github.com/lmoneta/tmva-tutorial/tree/master/sofie

▶ Link to PR implementing SYCL code generation

▶ Link to benchmarks in rootbench repository 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https://root.cern.ch/doc/master/group__tutorial__tmva.html
https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://github.com/root-project/root/pull/13550
https://github.com/root-project/rootbench/pull/239
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Abstract 
The next-generation ground-based gamma-ray observatory, the Cherenkov Telescope Array Observatory 
(CTAO), will consist of two arrays of tens of imaging atmospheric Cherenkov telescopes (IACTs) to be built in 
the Northern and Southern Hemispheres, aiming to improve the sensitivity of current-generation instruments 
by a factor of five to ten. Three different sizes of IACTs are proposed to cover an energy range from 20 GeV to 
more than 300 TeV. This contribution focuses on the analysis scheme of the Large-Sized Telescope (LST), 
which is in charge of the reconstruction of the lower energy gamma rays of tens of GeV. The Large-Sized 
Telescope prototype (LST-1) of CTAO is in the final stage of its commissioning phase collecting a significant 
amount of scientific data.

The working principle of IACTs consists of the observation of extended air showers (EASs) initiated by the 
interaction of very-high-energy (VHE) gamma rays and cosmic rays with the atmosphere. Cherenkov photons 
induced by a given EAS are recorded in fast-imaging cameras containing the spatial and temporal 
development of the EAS together with the calorimetric information. The properties of the originating VHE 
particle (type, energy and incoming direction) can be inferred from those recordings by reconstructing the full-
event using machine learning techniques. We explore a novel full-event reconstruction technique based on 
deep convolutional neural networks (CNNs) applied on calibrated waveforms of the IACT camera pixels using 
CTLearn. CTLearn is a package that includes modules for loading and manipulating IACT data and for running 
deep learning models, using pixel-wise camera data as input.

Full-event reconstruction using CNN-based models on 
calibrated waveforms for the Large-Sized Telescope 
prototype of the Cherenkov Telescope Array Observatory

Tjark Miener*,1, B. Lacave1, D. Nieto2, 
M. Heller1, T. Montaruli1, L. Burmistrov1 
and I. Bezshyiko3,+ for the CTA-LST Project

*tjark.miener@unige.ch
1Université de Genève
2IPARCOS, Universidad Complutense de Madrid
3University of Zurich
+speaker

ctao.org

Fig. 1: Low-level data analysis scheme for IACTs (modified image from [1]).

Introduction 
In this contribution, we show how deep convolutional neural 
networks (CNNs) can be utilized to analyze Monte Carlo (MC) 
simulations of gamma-ray events using CTLearna, a Deep 
Learning (DL) framework for IACT event reconstruction, and DL1-
Data-Handlerb, a package designed for the data management of 
DL-based image and waveform analysis techniques for IACT data.

IACT data analysis 
The IACT data analysis flow consists of several stages (see Fig.1). 
At the first stage of the low-level analysis, the raw data products 
are waveforms, i.e., signal intensities recorded by the 
photodetectors over a given time interval. The first step is to 
calibrate and extract the signal. The obtained data products are 
images containing the integrated charges and peak arrival times of 
the event in each camera pixel. Then, the images are cleaned to 
remove most of the Night Sky Background (NSB) noise in order to 
properly parameterize the Cherenkov shower signal in form of an 
ellipsoid, which reduces the information of the event to a small set 
of parameters. MC simulations are nowadays utilized for training 
Machine Learning (ML)-based algorithms, e.g. Random Forest 
(RF), with the set of extracted parameters to infer the properties of 
the primary particles. Once the particle type, arrival direction, and 
energy are reconstructed, the Instrument Response Functions 
(IRFs) are obtained from MC simulations. Within the CTLearn 
framework, CNN-based model are developed to reconstruct the 
event properties from low-level data (waveforms or images) to 
access as much information as possible.

https://ctlearn.readthedocs.io
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Fig. 2: Reconstruction performance of the two 
different DL approaches on MC simulations of the 
LST-1 of CTAO: Energy resolution (top left), angular 
resolution (bottom left) and gamma/hadron cuts 
for keeping 70% of the signal (right).

Validation on MC simulations 
For this work, we selected CTLearn’s Thin-ResNet (TRN) model, which is a shallow residual neural 
network with 34 layers. We explore two DL approaches by feeding the TRN with calibrated 
waveforms or integrated images of the LST-1 of CTAO. The waveforms and images are cleaned by 
ctapipe, the low-level data processing pipeline software for CTAO, to suppress the major fraction of 
the NSB. It was demonstrated in [2] that CNNs trained with cleaned images rather than raw images 
show a stronger robustness, when applying them to observational data of the MAGIC telescopes. 
To evaluate the performance, IRFs like the energy and angular resolution curves and the gamma/
hadron cuts for keeping 70% of the signal are computed (see Fig. 2), applying the same quality 
cuts as the conventional RF analysis.

Conclusion 
CNN-based full-event reconstruction works for MC simulated data of the LST-1 prototype of 
CTAO using cleaned waveforms or images as input. For the first time, IACT full-event 
reconstruction has been achieved on the waveform-level with CNN-based models. 
Additionally, a clear performance gain is observed in comparison to the same network 
trained on IACT images. We plan to evaluate the full performance of the LST-1 of CTAO with 
the different CNN-based analyses under various observation conditions in the future and 
compare the results to the conventional analysis on observational data [3].
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