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Anomaly Detection

e Normal trigger selections compare the event particles to a table
of rules

- e.g. “is there a muon with transverse momentum above 22 GeV?”

e Could these selections reject the New Physics we'd like to see”?

- Especially low mass new particles

e AXOL1TL is an ML approach to Anomaly Detection searching X
generically for New Physics

e Tiny Variational AutoEncoder trained on unbiased data with
Quantization Aware Training

e his4ml converts the Neural Network to FPGA logic with 50 ns
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AXO 'TL

e Anomaly Detection has been deployed in the Global
rigger Test Crate in 2023

Run in “safe mode” alongside normal trigger
e Used to test performance and validate integration

e Check rate stabllity of selections and look at offline data
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Realtime Anomaly Detection
with the CMS Level-1 Global
Trigger Test Crate

CMS Trigger

The CMS experiment at the LHC deploys a trigger system [1] of
around 100 FPGA processors to filter the 40 MHz proton-proton
collisions down to 100 kHz.
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Reconstruction of detector signals provides a description of the
particles and properties of each event. A menu of conditions on these
properties is used to select events to keep or reject. Trigger selections
are chosen balancing the needs of physics analysers with the event rate
of each condition.

The menu is deployed into 6 MP7 cards [2] in the Global Trigger
system, that each host a Xilinx Virtex 7 FPGA. The Test Crate is a
parallel copy, whose decision is not used to trigger CMS, that
is used to test new algorithms.

Deployment

The AXOLI1TL algorithm is converted to FPGA firmware with High
Level Synthesis (HLS): C++ for FPGAs. hlsdml [5] is used for the
efficient implementation of Neural Network inference. The rest of the
HLS framework implements the interface to the particle and event
property data formats from the Global Trigger, and the loss
computation.

The algorithm is synthesized using Xilinx's Vitis HLS and Vivado tool
suite. The floorplan (left plot) shows one Global Trigger FPGA module
with AXOL1TL highlighted in purple. AXOL1TL consumes around 2%
of the FPGA Look Up Table (LUT) resources of one FPGA. The
inference latency (the time delay after which a prediction is made from
new inputs) is 50 ns, meeting the requirement from the Global Trigger
system for deployment in a full menu.
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Anomaly Score

AXOL1TL was deployed into the Test Crate during CMS data taking in
2023. Binary keep/reject trigger decisions with different anomaly score
thresholds were recorded for every event. Validation of the
deployment was performed with offline recomputation of the anomaly
score by emulation of the HLS firmware. Agreement of 99% was
observed between the two, with differences centred around the
thresholds (right plot).
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Anomaly Detection

AXOL1TL is a trigger algorithm designed to detect new physics
without bias to the type of physics signature [3]. It's a Variational
AutoEncoder trained unsupervised, on unbiased data comprised
mostly of background events.
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Quantization Aware Training [4] is used to produce a model that is
efficient for inference in hardware. Only the p2 term is evaluated for
, anomaly detection at inference time, avoiding the need to compute
the full decoder. Anomalous events are selected by applying
a cut on this anomaly score.

Monitoring

The Test Crate FPGAs count how many events would pass each trigger
selection, which is read out by the Data Acquisition system. A
Prometheus monitoring tool stores count and rate metrics, and
answers queries to access them. The plot shows the event selection
rate over time for 4 different AXOL1TL thresholds during one CMS
data taking run of around 8 hours. The data rate shows stability, with
variations following LHC luminosity.
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In the unbiased dataset collected, some events would have been
selected by AXOL1TL, but not any other trigger. The event display
shows the offline reconstruction of the event with the highest anomaly
score. It contains 7 jets (orange cones), 1 muon (red curve), and an
unusually high 75 vertices (intersections of several particle trajectories).
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Baler: A tool for machine learning
based data compression

Alexander Ekman for the Baler collaboration




Problem: More data than storage
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« Collection and generation of data is overwhelming processing and storage

Disk Storage [EB]

capacity in science and industry

High demand for greater compression than traditional lossless and lossy

5 Run 3 (u=55) Run 4 (1=88-140) Run 5 (11=165-200)
T I T T T I T T I' l 'I T T ] T T | T T T l T T T l 'j’ T T I :
- ATLAS Preliminary [ =
4.5 2020 Computing Model - Disk . =
4F- © Baseline ] E
-~ 4 Conservative R&D i 3
3.5 v Aggressive R&D 2 e
- — Sustained budget model B | E
3 = (+10% +20% capacity/year) g b B
2.5 & LHCC common scenario ,,"'. ,""" —
- (Conservative R&D, 1=200) A‘,’; i -
2F 2 —
1.5F 7 =
1 3
0.5 E
| 3

1 --l- 1 1 1 1 | 1 1 1 l 1 1 1 I 1 1 1 I  } 1 1 | 1 1 1
2020 2022 2024 2026 2028 2030 2032 20

34

Year

ATLAS HL-LHC Computing Conceptual Design Report
Calafiura, P ; Catmore, J ; Costanzo, D ; Di Girolamo, A
http://cds.cern.ch/record/2729668/

Autoencoder
IR
o X
) encoder decoder
input latent space output

)

i

Compressed data
saved to disk

Figure modified from:
https://tikz.net/neural_networks/




Our solution: “Baler”
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Multidisciplinary tool to investigate the viability of this compression method

— https://qgithub.com/baler-collaboration/baler
Simple to install as a pip package
— pip install baler-compressor
Promising performance for varying
scientific fields
High Energy Particle Physics
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https://github.com/baler-collaboration/baler

Future outlook
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« We found a small demand for lossy
compression of scientific data in final
storage

« New focus on “online” compression
and bandwidth compression using
FPGA technology

« Draw inspiration from progress in
machine learning based image and
video compression
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Introduction

Energy deposits in LAr
calorimeter cell—electric
pulse
- shaped
ECARE - sampled
- digitized at 40 MHz

Simulated pulse chain with additional
injected pulses at higher energy

The pulse spans about 625
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Energy Reconstruction

Neural network structure
CNN with ~100 parameters

Energy prediction for every BC
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2-Conv CNN

Continuous input from one detector cell
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CNNs and RNNs are designed to compute
deposited energy.

NNs can correct the degradation of the
energy resolution.




Optimization of the RNN Firmware implementation

L AREUS Simulation 000458 RNN with 8 units and 5 samples LASP‘demonstrator built with
Stratix-10

- <u> = 140, EI*° > 240 MeV 0.004 . .
5 . as input can be upgraded : . .
* RNN 32 units seq 30 0.0035 P P& ) - prototype with Agilex 7
— - Increase nb of units .
0.003 ongoing

N .
0.0025 ofeert;ﬁr resolution Each FPGA needs to reconstruct

0.002 . the energy for 384 channels : ) 5

0.0015 Increase nb of input - Impossible to implement : L oSS

0.001 samples -
0.0005 Lbetter resolution with 384 NNs on the FPGA LASP board demonstrator

4i Lol bbb b b i | 0 Overla ed ulses - Need multiplexing
b 102030 40 50 60 7%22)[9&1:?0 pped p - Need higher

frequency

M : number of MAC units, required number of multiplications
U : units, internal dimension of neural network (output dimension)
L : length, number of samples taken as input

RNN and CNN Implemented on Stratix-10
- CNN implemented on Agilex, RNN still in progress
- CNN directly implemented in VHDL, RNN Implemented
first in HLS for fast prototyping and then optimized in
VHDL
Fits LAr requirements for both

Increasing the number of units and input samples go with FPGA Network Multiplex. Detector cells fiyax
more computations and it can’t be implemented. RNN (HLS) 10 370 303 MHz
- Dense Layer as input of the 1st RNN cell for input Stratix-10  RNN (VHDL) 14 392 561 MHz

samples before the energy deposit. CNN (100 param.) 12 396 415 MHz

- RNN cells to compute the amplitude on the peak Agilex CNN (100 param.) 12 396 539 MHz
- Dense to correct for the pileup CNN (400 param.) b =90 ai0MKiz




