

The European Union

Characterizing the *Fermi*-LAT high-latitude sky with simulation-based inference

Christopher Eckner (christopher.eckner@ung.si) University of Nova Gorica, Center for Astrophysics and Cosmology, Slovenia 30th of April 2024

European AI for Fundamental Physics Conference (EuCAIFCon) Amsterdam, Netherlands

Fundamental pr

The high-energy gamma-ray sky seen over the decades (space-borne telescopes).

EuCAIFCon I Amsterdam I 30th April 2024

Simulation-based inference brings back physics

EuCAIFCon I Amsterdam I 30th April 2024

Christopher Eckner, <u>ceckner@ung.si</u>

First Application to Gamma Rays: High-Latitude Sky

We tune our SBI approach to gamma-ray data with observations of the high latitudes → Less backgrounds and more opportunities to cross-check with literature results!

EuCAIFCon I Amsterdam I 30th April 2024

Neural Simulation-Based Supernova la Cosmology

Kosio Karchev Roberto Trotta, Christoph Weniger

EUROPEAN AI FOR FUNDAMENTAL PHYSICS CONFERENCE EuCAIFCon 2024

Supernova Ia cosmology

TMNRE for supernova light curves

NRE

SLiCsim

The importance of being principled

Fast likelihood-free inference in the LSS Stage-IV era

GRavitation AstroParticle Physics Amsterdam

EuCAIFCon - 30th April 2024

Guillermo Franco Abellán

Based on <u>arXiv:2403.14750</u>

with Guadalupe Cañas-Herrera, Matteo Martinelli, Oleg Savchenko, Davide Sciotti, & Christoph Weniger

Forthcoming cosmological surveys will provide us with unprecedented data to probe the dark sector...

Forthcoming cosmological surveys will provide us with unprecedented data to probe the dark sector...

...but analysing these data will be challenging with classical methods

Forthcoming cosmological surveys will provide us with unprecedented data to probe the dark sector...

...but analysing these data will be challenging with classical methods

Our **GOAL**

using Marginal Neural Ratio Estimation* (MNRE, a new approach in SBI)

*Implemented in **Swyft** [Miller+ 20]

Accelerate parameter inference from Stage-IV photometric surveys (i.e. Euclid)

Forecast ΛCDM posteriors

Forecast constraints on decaying DM

Forecast constraints on decaying DM

Forecast constraints on decaying DM

Improve current limits by ~1 order of magnitude!

JAMES ALVEY Postdoc University of Amsterdam j.b.g.alvey@uva.nl 1.2×10^{-19} 1.0 0.8 Strain 0.6 0.4 Loads of different signal classes, 0.2all in the same data stream \mathcal{O} 0.0 -0.4THE -0.6^{L}_{0} 2 **EVERYTHING** Unknown number of signals that can't be **ALWAYS** separated (highly overlapping, unlike LIGO) ALL-AT-ONCE So, (someone) has to carry out a joint analysis, naively 10000s of parameters PROBLEM

SIMULATION BASED INFERENCE

FOR THE STOCHASTIC GW BACKGROUND •

JAMES ALVEY Postdoc University of Amsterdam 📫 j.b.g.alvey@uva.nl

EVERYTHING

ALL-AT-ONCE

ALWAYS

PROBLEM

THE

• MARGINALISE | SBI is naturally able to marginalise "Turn the 10000-dim problem you don't want to solve into the 10-dim one you do"

• AMORTISE | SBI can (sometimes) be fully amortised "Do the hard work once, and do it right"

• TRANSFORM | SBI can (in principle) look at the data in whatever (compressed) form you want "Don't be constrained by data likelihoods"

Unknown number of signals that can't be separated (highly overlapping, unlike LIGO)

> So, (someone) has to carry out a joint analysis, naively 10000s of parameters

Loads of different signal classes, all in the same data stream

SIMULATION BASED INFERENCE

FOR THE STOCHASTIC GW BACKGROUND

