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Fundamental physics with gamma rays is hard

[Fermi-LAT collaboration, ApJS 223 (2016) 2]
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Fig. 1.— Mollweide projection in Galactic coordinates of accumulated counts maps for SAS-2,

COS-B, EGRET (above 50 MeV) and Fermi-LAT (above 360 MeV, 4 years, Clean class events).

Regions with enhanced numbers of counts due to a non-uniform exposure time in observations with

pointed observations are apparent in panels corresponding to SAS-2, COS-B, and EGRET.
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The high-energy gamma-ray sky seen over the decades (space-borne telescopes).
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Figure 1. Visualization of possible solutions to the dark matter problem.
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[Bertone, Tait, Nature 562 (2018) 7725] 

Signatures of fundamental physics 
are potentially hiding there! 
→ How to deal with the complexity  
     of all the astrophysics?  
     There is a lot to model …

https://doi.org/10.3847/0067-0049/223/2/26
mailto:eckner@lapth.cnrs.fr


Simulation-based inference brings back physics
Ratio estimation as a form of simulation-based inference (SBI):

p(Z |X)
p(Z)

=
p(X |Z)

p(X)
=

p(X, Z)
p(X)p(Z)parameters , data Z X

Likelihood-to-evidence ratio

prior

posteriorBayes’ Theorem

swyft 
[B. Miller et al., J. Open Source Softw. 7 (2022) 75]
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The great scheme of TMNRE: 
→ Inference on high-dimensional  
    models using a binary 
    classification network and an  
    overall reduction of computation  
    costs.
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https://doi.org/10.21105/joss.04205
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First Application to Gamma Rays: High-Latitude Sky
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We tune our SBI approach to gamma-ray data with observations of the high latitudes  
→ Less backgrounds and more opportunities to cross-check with literature results! 

Fermi-LAT data

Model components

Scientific Objectives: 
(1) What is the distribution of 
     point-like gamma-ray 
     sources as a function of their 
     flux?
(2) Which of them can we  
     robustly detect?
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preliminary
You may wonder: 
1. How does it work?
2. What does the astro model look like?
3. What are your plans?

Let’s have a chat, Wednesday 12 - 3 pm
in poster session A!
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Neural Simulation-Based
Supernova Ia Cosmology

Kosio Karchev

Roberto Trotta, Christoph Weniger



Supernova Ia cosmology



TMNRE for supernova light curves

SLiCsim

Tuple-based NN:
global and local

NRE



The importance of being principled
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Guillermo Franco Abellán

Fast likelihood-free inference  
in the LSS Stage-IV era

Based on arXiv:2403.14750   
 with Guadalupe Cañas-Herrera, 
           Matteo Martinelli, 
           Oleg Savchenko,   
           Davide Sciotti, 
           & Christoph Weniger

EuCAIFCon - 30th April 2024

https://arxiv.org/abs/2403.14750
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Forthcoming cosmological surveys 
will provide us with unprecedented 
data to probe the dark sector… 
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Forthcoming cosmological surveys 
will provide us with unprecedented 
data to probe the dark sector… 

…but analysing these data will be 
challenging with classical methods

Our GOAL

Accelerate parameter inference from Stage-IV photometric surveys (i.e. Euclid) 
using Marginal Neural Ratio Estimation* (MNRE, a new approach in SBI)

[Miller+ 20]*Implemented in Swyft

https://arxiv.org/abs/2011.13951
https://github.com/undark-lab/swyft
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MNRE & MCMC are in 
excellent agreement! 
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Dramatic reduction  
in CPU time!
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on decaying DM
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Improve current limits by 
~1 order of magnitude!



Loads of different signal classes, 
all in the same data stream
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SIMULATION BASED INFERENCE 
FOR THE STOCHASTIC GW BACKGROUND 

STATEMENT #1 LISA DATA ANALYSIS IS A BIG CHALLENGE

THE  
EVERYTHING  
ALWAYS 
ALL-AT-ONCE 
PROBLEM

Unknown number of signals that can’t be 
separated (highly overlapping, unlike LIGO)

So, (someone) has to carry out a joint 
analysis, naively 10000s of parameters POSTER: LOC 15, WEDNESDAY
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STATEMENT #2 SBI CAN HELP

θ ∼ π(θ)

SIMULATOR

xobs

xsim ∼ p(xsim |θ)

p(θ |xobs)

??
??

PRIOR

(SIMULATOR) LIKELIHOOD

POSTERIOR

MARGINALISE | SBI is naturally able to marginalise

AMORTISE | SBI can (sometimes) be fully amortised

TRANSFORM | SBI can (in principle) look at the data in 
whatever (compressed) form you want

“Turn the 10000-dim problem you don’t want to solve into the 10-dim one you do”

“Do the hard work once, and do it right”

“Don’t be constrained by data likelihoods”

POSTER: LOC 15, WEDNESDAY
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