
Anomaly detection  
for dark matter 
direct detection 

Aim: Use event-by-event prompt readout to train 
anomaly detector  



Semi-unsupervised pipeline: Combined anomaly function leverages discrete nature of detector 
events 

Non-background events  Higher TS →

Prompt readout



What we get…
VAE learns event energy… 

Establish 1D two-sample test  
No nuisance parameters  
Spectral info encoded 
No dependence on high level summary statistics (cS1/cS2) 
Trivially implement calibration data directly  
Likelihood free and model independent   
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Clustering algorithms are integral to multi-modal nested sampling, for both region-based samplers such as MultiNest, and chain-based samplers such
as PolyChord. Robust identification clusters of live points is crucial for e↵ective spawning of new live points, prior volume estimation and therefore the
total evidence calculation. Reliable cluster detection also allows the calculation of the sub-evidences of each cluster, which may correspond to di↵erent
physical phenomena. We have explored extensions to the clustering approach within PolyChord, and found that including correlation between the
volume estimates of clusters increases the accuracy of evidence calculations. We show how di↵erent clustering methods a↵ect a reconstruction of the
cosmological primordial matter power spectrum PR(k).

Clustering choice

2D demonstation of PolyChord’s
K-Nearest Neighbours, pyclustering’s

X-means and scikit-learn’s
(H)DBSCAN.

The nested sampling [1, 2] algorithm Poly-

Chord was originally advertised suggesting
that the user should experiment with their
favourite cluster-identifying methods, but
provides no guidance on how to do so [3, 4].
We have added an interface which allows the
user to substitute any clustering strategy at
the Python level, allowing for easier experi-
mentation with alternatives such as the se-
lection provided by scikit-learn and py-

clustering [5, 6].
Some algorithms are better suited than others
to identifying posterior modes of nested sam-
pling live points, for example K-means and
spectral clustering need to be told the number
of clusters to look for, others may not assign
every point to a cluster. Some approaches
find clusters where there are none!

Application to cosmology PR(k)

This investigation was initially motivated by a reconstruc-
tion of the primordial matter power spectrum PR(k) using
flexknots [7, 8], and the Planck 2018 likelihoods [9, 10].
Planck measured the C` multipole range 1  `  7000,
corresponding to 10�4

 k/Mpc�1
 10�0.3 [11]. Flex-

knots are parameterisations of 1D functions, consisting
of a series of splines (in this case linear) joined at knots.
The number and positions of knots are determined by
the data, which can be performed by either combining
several runs with fixed number of knots, or the number
of knots being itself a parameter. In the former case, we
noticed that with three knots only the mode with the
central knot towards the left was being fully explored.
PolyChord’s native K-nearest-neighbours clustering was
unable to separate the positions of the central knot into
two distinct clusters, so we explored both o↵-the-shelf
clustering algorithms and an approach which includes
likelihood information, L-means.

Examples of PR(k) flexknots
with three knots each.

Prototype L-means
algorithm

Perform K-means with K=2
Calculate the likelihood at the centres of

the two clusters
find the midpoint of the two centres
calculate the likelihood at the midpoint

if (the midpoint has greater likelihood
than either centre ):
all points are within the same cluster

else:
recurively apply L-means to each cluster

K-nearest-neighbours X-means

DBSCAN (✏ = 0.5) L-means

K-nearest-neighbours and DBSCAN fail to separate the central knot into two clusters, while
X-means does so reliably. L-means is able to separate the central knot into multiple clusters,
but also tends to over-cluster. Functional posterior plots were created using fgivenx [12],
and scatterplots showing clusters were created using a development branch of anesthetic
[13].

Classes of Nested Sampler

Nested sampling algorithms have two main strategies for sampling new points from the prior:

Chain-based

live points

likelihood contour

new live point

slice sampling

gradient-guided

A su�ciently
long random
walk within
the likelihood
contour from
an existing
live point
will generate
a new
live point.
PolyChord first uses the covariance ma-

trix of the live points to whiten the space,
then performs Neal’s slice sampling along
orthogonal directions in that space [3, 4].
GGNS (gradient-guided nested sampling)
also implements both Neal’s and Hamil-
tonian slice sampling, along with uniform
sampling and random walks [14].
Multiple-modal problems render contour

whitening ine↵ective, and a strategy is re-
quired to decide from which mode to sample
since a random walk cannot pass through
the likelihood contour.

Region-based

live points

likelihood contour

single ellipsoid

multi-ellipsoid

Region-based
samplers
construct
regions
around the
live points to
approximate
the likelihood
contour.
MultiNest

constructs a series of ellipsoids [15–17].
These regions are usually expanded by a
numerical factor to improve their chances
of fully enclosing the likelihood contour,
then a point is rejection-sampled from
them. The curse of dimensionality means
that these techniques are only e↵ective up
to O(10) dimensions, as either rejection
sampling becomes ine�cient, or the expan-
sion factor would have to be so low that
significant regions of the likelihood contour
would be missed. Clustering can be used
to separate the live points into discrete
regions, rather than a single sparse region.

Hybrid methods combine the two approaches in an attempt to alleviate the dimensionality
scaling of region-based methods, while reducing the number of likelihood evaluations made
outside the contour [14,18–20].

Correlated cluster volumes (in progress!)

When a cluster p is divided, the remaining prior volume Xp is
divided among its subclusters Xi . However, in nested sampling,
we do not know the precise prior volumes, only expectation val-
ues and errors. This is divided according to the proportion of
live points in each cluster ni :

X i =
ni
np
X p, X 2

i =
ni(ni + 1)

np(np + 1)
X 2
p ,

XiXj =
ninj

np(np + 1)
X 2
p .

Accounting for prior
volume correlations may
provide more accurate

posteriors.

Since XiXj 6= Xi Xj , the error on the prior volumes estimates of each cluster are correlated.
This is important when deciding from which cluster to sample; currently PolyChord chooses
a cluster propotionally to its prior volume Xi , but neglects their correlation. We are ex-
perimenting with drawing a set of Xi from their joint distribution before each live point is
generated, which has shown promise with symmetric multi-modal likelihoods.
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Motive: primordial matter power 
spectrum flex-knot reconstruction
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Clustering choices 
are abundant!
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of a series of splines (in this case linear) joined at knots.
The number and positions of knots are determined by
the data, which can be performed by either combining
several runs with fixed number of knots, or the number
of knots being itself a parameter. In the former case, we
noticed that with three knots only the mode with the
central knot towards the left was being fully explored.
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unable to separate the positions of the central knot into
two distinct clusters, so we explored both o↵-the-shelf
clustering algorithms and an approach which includes
likelihood information, L-means.
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Perform K-means with K=2
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DBSCAN (✏ = 0.5) L-means

K-nearest-neighbours and DBSCAN fail to separate the central knot into two clusters, while
X-means does so reliably. L-means is able to separate the central knot into multiple clusters,
but also tends to over-cluster. Functional posterior plots were created using fgivenx [12],
and scatterplots showing clusters were created using a development branch of anesthetic
[13].
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a new
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PolyChord first uses the covariance ma-

trix of the live points to whiten the space,
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orthogonal directions in that space [3, 4].
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sion factor would have to be so low that
significant regions of the likelihood contour
would be missed. Clustering can be used
to separate the live points into discrete
regions, rather than a single sparse region.

Hybrid methods combine the two approaches in an attempt to alleviate the dimensionality
scaling of region-based methods, while reducing the number of likelihood evaluations made
outside the contour [14,18–20].

Correlated cluster volumes (in progress!)

When a cluster p is divided, the remaining prior volume Xp is
divided among its subclusters Xi . However, in nested sampling,
we do not know the precise prior volumes, only expectation val-
ues and errors. This is divided according to the proportion of
live points in each cluster ni :
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volume correlations may
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Since XiXj 6= Xi Xj , the error on the prior volumes estimates of each cluster are correlated.
This is important when deciding from which cluster to sample; currently PolyChord chooses
a cluster propotionally to its prior volume Xi , but neglects their correlation. We are ex-
perimenting with drawing a set of Xi from their joint distribution before each live point is
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Recall CNN can only see images/pixels
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Auxiliary Information Important !

CNNs need Aux Info to infer from Different Signal Regions
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Problem - Data Marginalized Forecasts for Bayesian
Model Comparison are Typically Infeasible

Nested Sampling: Generally applicable but too slow to explore data space
Savage–Dickey forecasts: Restrictive assumptions and require nested models

Both require explicit likelihoods.
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Problem - Data Marginalized Forecasts for Bayesian
Model Comparison are Typically Infeasible

Nested Sampling: Generally applicable but too slow to explore data space
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Both require explicit likelihoods.

Solution - Neural Bayes Ratio Estimation (Evidence Network)
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Example - Detecting the Global 21-cm Signal
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Just 5.54GPU hours to perform instead of the 45,000,000CPU
hours nested-sampling would have taken.
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