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Anomaly detection
for dark matter
direct detection

Particle

Aim: Use event-by-event prompt readout to train
anomaly detector
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Semi-unsupervised pipeline: Combined anomaly function leverages discrete nature of detector
events

Non-background events — Higher TS



Establish 1D two-sample test
o No nuisance parameters
What we get. z m o Spectral info encoded
o No dependence on high level summary statistics (cS1/cS2)
o Trivially implement calibration data directly
O

Likelihood free and model independent
VAE learns event energy...
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Clustering Considerations
for Nested Sampling

5.3.1 Cluster recognition

Any cluster recognition algorithm can be substituted at this
point. One must take care that this is not run too often, or
one runs the risk of adding a large overhead to the calcu-

lation. In practice, checking for clustering every ~ O(niive)
iterations is sufficient, since the prior will have only com-
pressed by a factor e. We encourage users of POLYCHORD
to experiment with their own preferred cluster recognition,
in addition to that provided and described below.

“PolyChord: next-generation nested sampling”
arXiv:1506.00171

Adam Ormondroyd
University of Cambridge
Kavli Institute for Cosmology




Motive: primordial matter power
spectrum flex-knot reconstruction

100 nested sampling live 725 nested sampling live
points (low resolution) points (normal resolution)
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Primordial matter power spectrum
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Clustering choices
are abundant!

DBSCAN
(e=0.3) HDBSCAN

In 101°Px(k)




Clustering algorithms are integral to multi-modal nested sampling, for both region-based samplers such as MultiNest, and chain-based samplers such

as PolyChord. Robust identification clusters of live points is crucial for effective spawning of new live points, prior volume estimation and therefore the
total evidence calculation. Reliable cluster detection also allows the calculation of the sub-evidences of each cluster, which may correspond to different
physical phenomena. We have
volume estimates of clusters increases the accuracy
cosmological primordial matter power spectrum Pr(k)

The nested sampling [1,2] algorithm Poly-
Chord was originally advertised suggesting
that the user should experiment with their
favourite cluster-identifying methods, but
provides no guidance on how to do so [3,4]
We have added an interface which allows the
user to substitute any clustering strategy at
the Python level, allowing for easier experi-
mentation with alternatives such as the se-
lection provided by scikit-learn and py-
clustering [5,6]
Some algorithms are better suited than others
to identifying posterior modes of nested sam-
pling live points, for example K-means and
2D demonstation of PolyChord's spectral clustering need to be told the number
K-Nearest Neighbours, pyclustering's
X-means and scikit-learn's
(H)DBSCAN.

of clusters to look for, others may not assign
every point to a cluster. Some approaches

find clusters where there are none!

This investigation was initially motivated by a reconstruc-

plored extensions to the clustering approac
of evidence calculations. We show how different cluste

within PolyChord, and found that including correlation between the

ing methods affect a reconstruction of the

Nested sampling algorithms have two main strategies for sampling new points from the prior

Chain-based

A sufficiently
long random

walk within

the likelihood

contour from

an existing

live point

will generate

anew

live point.

PolyChord first uses the covariance ma-
trix of the live points to whiten the space,
then performs Neal's slice sampling along
orthogonal directions in that space [3, 4]
GGNS (gradient-guided nested sampling)
also implements both Neal's and Hamil-
tonian slice sampling, along with uniform
sampling and random walks [14].

Multiple-modal problems render contour
whitening ineffective, and a strategy is re-
quired to decide from which mode to sample
since a random walk cannot pass through
the likelihood contour.

Region-based

Region-based
samplers

construct

regions

around the

live points to

approximate

the likelihood

contour

MultiNest

constructs a series of ellipsoids [15-17]
These regions are usually expanded by a
numerical factor to improve their chances
of fully enclosing the likelihood contour,
then a point is rejection-sampled from
them. The curse of dimensionality means
that these techniques are only effective up
to O(10) dimensions, as either rejection
sampling becomes inefficient, or the expan-
sion factor would have to be so low that
significant regions of the likelihood contour
would be missed. Clustering can be used
to separate the live points into discrete

tion of the primordial matter power spectrum Pr(k) using h
flexknots [7, 8], and the Planck 2018 likelihoods [0, 10]. s regions, rather than a single sparse region.
Planck measured the C; multipole range 1 < ¢ < 7000,

corresponding to 10 < k/Mpc ™ < 107°3 [11]. Flex-
knots are parameterisations of 1D functions, consisting
of a series of splines (in this case linear) joined at knots.
The number and positions of knots are determined by

Hybrid methods combine the two approaches in an attempt to alleviate the dimensionality
scaling of region-based methods, while reducing the number of likelihood evaluations made
outside the contour [14, 16~

the data, which can be performed by either combining

several runs with fixed number of knots, or the number
Examples of Py (k) flexknots

of knots being itself a parameter. In the former case, we
with three knots each

noticed that with three knots only the mode with the
central knot towards the left was being fully explored. Prototype £-means
When a cluster p is divided, the remaining prior volume X, is

PolyChord’s native K-nearest-neighbours clustering was
divided among its subclusters X;. However, in nested sampling,

unable to separate the positions of the central knot into ISEers - "
we do not know the precise prior volumes, only expectation val-

ues and errors. This is divided according to the proportion of
live points in each cluster ;

ni ni(ni +1

PR ma(mp + 1)

— nin;

XX

C TG " np(np + 1) provide more accurate
: 1 - posteriors.
. = j p X; # X; X;, the error on the prior volumes estimates of each cluster are correlated
- = This is important when deciding from which cluster to sample; currently PolyChord chooses
\ h a cluster propotionally to its prior volume X;, but neglects their correlation. We are ex-
i ‘- perimenting with drawing a set of X; from their joint distribution before each live point is
. S . | I < generated, which has shown promise with symmetric multi-modal likelihoods

DBSCAN (¢ = 05)

Lol
{ |

K-nearest-neighbours and DBSCAN fail to separate the central knot into two clusters, while
X-means does so reliably. £-means is able to separate the central knot into multiple clusters,
but also tends to over-cluster. Functional posterior plots were created using fgive .
and scatterplots showing clusters were created using a development branch of anesthetic

two distinct clusters, so we explored both off-the-shelf

clustering algorithms and an approach which includes
likelihood information, £-means : (RN

i Accounting for prior

X-means volume correlations may

K-nearest-neighbours

L-means




Enhancing Robustness

BSM Parameter Inference with n1D-CNN and Novel Data Augmentation

Koay Yong Sheng
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Given the following images, whatis x__ 7

signal”

T

Impossible! No scale of reference!

Enhancing Robustness
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Recall CNN can only see images/pixels

UNIVERSITET Koay Yong Sheng, Stefano Moretti, Prashant Singh, Harri Waltari

\sised

UPPSALA




Auxiliary Information Important !

d Novel Data Augmentation

_EmTTe | \
|

with n1D-CNN an

Inference

meter

o =) [30 0] fes)] (20

98]
n
Q
C
40
%)
2
0O
O
ad
@)
C
O
C
0
e
C
LLl
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CNNs need Aux Info to infer from Different Signal Regions

UNIVERSITET Koay Yong Sheng, Stefano Moretti, Prashant Singh, Harri Waltari



Orders oF Magnltude Better
n-1DCNN- BUMP [y |

(Extending 1DCNN with Auxiliary Inputs) H UNTS

1 Observable

BSM Inference

from

ANY SIGNAL REGION BUMP-LESS
ANY FIXED NO. OF OBSERVABLES MONO-XIB

(Beyond Standard Model)

SIGNALS
Poster A:1 4 (Dark Matter Search)

3 Observables

Enhancing R
Robustness Data Augmentation

that grows with N and Nobeert
BSM Parameter Inference with n1D-CNN BO N US (that g nalRegio s

and Novel Data Augmentation AD\/ANTAGES . .
Koay Yong Sheng Signal Reg|on Evaluator

(Which is the Best Signal Region?)




Fully Bayesian Forecasts with Neural Bayes Ratio
Estimation (Poster #9, arXiv:2309.06942)

Thomas Gessey-Jones (tg400@cam.ac.uk) and Will Handley (wh260@cam.ac.uk) '

Problem - Data Marginalized Forecasts for Bayesian
Model Comparison are Typically Infeasible

Nested Sampling: Generally applicable but too slow to explore data space
Savage—Dickey forecasts: Restrictive assumptions and require nested models
Both require explicit likelihoods.




Fully Bayesian Forecasts with Neural Bayes Ratio
Estimation (Poster #9, arXiv:2309.06942)

Thomas Gessey-Jones (tg400@cam.ac.uk) and Will Handley (wh260@cam.ac.uk)

Problem - Data Marginalized Forecasts for Bayesian
Model Comparison are Typically Infeasible

Nested Sampling: Generally applicable but too slow to explore data space
Savage—Dickey forecasts: Restrictive assumptions and require nested models
Both require explicit likelihoods.

Simulated data Standard classifier
from competing neural network
models

the network output f(d) converges
to an invertible function G

of the Bayes ratio /C(d)

between the competing models




Fully Bayesian Forecasts with Neural Bayes Ratio
Estimation (Poster #9, arXiv:2309.06942)

Thomas Gessey-Jones (tg400@cam.ac.uk) and Will Handley (wh260@cam.ac.uk)

Problem - Data Marginalized Forecasts for Bayesian
Model Comparison are Typically Infeasible

Nested Sampling: Generally applicable but too slow to explore data space
Savage—Dickey forecasts: Restrictive assumptions and require nested models
Both require explicit likelihoods.

Solution - Neural Bayes Ratio Estimation (Evidence Network)

Simulated data
from competing
models

Standard classifier
neural network

Trained using loss
functions chosen

the network output f(d) converges
to an invertible function G

of the Bayes ratio KC(d)
between the competing models
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Just 5.54 GPU hours to perform instead of the 45,000,000 CPU
hours nested-sampling would have taken.
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