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Query by dropout committee

Ungenerated
parameter
set

Dropout
committee
§ Instantiate acz, ? ?
many S S S
8 versions % % %
3 >
g
S
= bl B
Generate top 10%
most uncertain
New data <

® ©

Score ranking

X

*®

104 4

103

102

oth loop
10th loop

[ 20th loop
mw 30th loop
mm 40th loop

100

10!
Inner radius / ISCO

10?2




Active learning

Grid learning
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Estimating classical mutual information for spin

systems and scalar field theories using generative

neural networks

Piotr Biatas, Piotr Korcyl, Tomasz Stebel
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2.2 Generative models & Simulation of physical systems
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I ML enhanced Monte Carlo simulations

Mutual information

Mutual information quantifies the "amount of information" obtained
about one random variable by observing the other random variable. The
bipartite partitioning into A, B allows defining the Shannon mutual

information as (a.b)
p(a
I'=Y) p(a,b)log —"—~
az; p(a)p(b)

.

Ancestral sampling using autoregressive neural networks
We factorize the probability into a product of conditional probabilities
N N

p(s) = P(SI)HP(SWSI,...,S"’I) ~ qe(Sl)Hqg(si|sl,.__75"*1).
i=2 i=2

Using reweighting from p to gg provides us with access to the full
partition function Z(f) as well as Z(a,) and Z(b,3) and write M| as

I(B) = log(W(a,b))q, — B(w(a,b)E(a;b))qq
—(w(a,b)log Z(a))qs — (w(a,b)log Z(b))q,

.
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.ML enhanced Monte Carlo simulations

Applications

Our group has applied this approach to various models:

quantum entanglement in the Ising chain
= Dawid Zapolski Calculating entanglement entropy with generative
neural networks, Location 41

hierarchical algorithm for the three-dimensional Ising model
= Mateusz Winiarski Applying hierarchical autoregressive neural
networks for three-dimensional Ising model, Location 74

higher-dimensional Ising model and Z, gauge model
= Vaibhav Chahar Simulation of Z, model using Variational
Autoregressive Network (VAN), Location 1

Potts model
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Flow-based generative models for particle calorimeter simulation
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Our computational ressources are limited!

Hadronization Detectors Events

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460NR. Winterhalder

Dataset 2, By = 693 GeV'

( We need fast and faithful surrogates.

s

= Normalizing Flows are both.

latent Bijector data
space L=—logp space

Claudius
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Flow-based generative models for particle calorimeter simulation

> direct: learn

P2 (flzn |E1:n: Einc)

@ Learn normalized shower:

—

© Learn how total energy is distributed across layers:

pl(Ell EZ/- .

» autoregressive: learn first layer py(Z;|Eq, Einc)
and step from (n— 1) to n: p3(Zu|Z,-1,7 En, En—1, Einc)
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Dataset Method AUC on voxels |
per shower [ms] |
GEANTA4 0O(10%) 0.499Q2)
CaloChallenge 1: v d  CALOFLOW IAF 0.79 & 0.01 0.761(2)
368-dim d CALOINN 0.51 £+ 0.03 0.626(4)
datasets GEANTA o109 0.609(4)
1. 7t d  CaLOFLOW IAF 1.00 + 0.02 0.884(2)
533-dim d CALOINN 0.44 £+ 0.01 0.784(2)
GEANT4 O() 0.500(2)
2 e a  iCALOFLOW IAF 132+05 0.819(4)
6480-dim d CALOINN 1.18 +£0.03 0.743(2)
3 o GEANT4 0(10°) 0.498(2)
10500-dim | a  iCALOFLOW IAF 16.7 £0.5 0.891(3)

~

Classify
Showers
Vs.
GEANT4
as metric.

Claudius Krause (HEPHY Vienna)
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