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Estimating classical mutual information for spin
systems and scalar field theories using generative

neural networks

Piotr Białas, Piotr Korcyl, Tomasz Stebel

Location: 44
2.2 Generative models & Simulation of physical systems
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ML enhanced Monte Carlo simulations

Mutual information
Mutual information quantifies the "amount of information" obtained
about one random variable by observing the other random variable. The
bipartite partitioning into A,B allows defining the Shannon mutual
information as

I = ∑
a,b

p(a,b) log
p(a,b)
p(a)p(b)

Ancestral sampling using autoregressive neural networks

We factorize the probability into a product of conditional probabilities

p(s) = p(s1)
N

∏
i=2

p(s i |s1, . . . ,s i−1) ≈ qθ (s
1)

N

∏
i=2

qθ (s
i |s1, . . . ,s i−1).

Using reweighting from p to qθ provides us with access to the full
partition function Z (β ) as well as Z (a,β ) and Z (b,β ) and write MI as

I (β ) = log⟨ŵ(a,b)⟩qθ
−β ⟨w(a,b)E (a,b)⟩qθ

−⟨w(a,b) logZ (a)⟩qθ
−⟨w(a,b) logZ (b)⟩qθ

.
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ML enhanced Monte Carlo simulations

Applications

Our group has applied this approach to various models:
quantum entanglement in the Ising chain
⇒ Dawid Zapolski Calculating entanglement entropy with generative
neural networks, Location 41
hierarchical algorithm for the three-dimensional Ising model
⇒ Mateusz Winiarski Applying hierarchical autoregressive neural
networks for three-dimensional Ising model, Location 74
higher-dimensional Ising model and Z2 gauge model
⇒ Vaibhav Chahar Simulation of Z2 model using Variational
Autoregressive Network (VAN), Location 1
Potts model
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Flow-based generative models for particle calorimeter simulation
— EuCAIFCon, Amsterdam, NL —

Claudius Krause

Institute of High Energy Physics (HEPHY), Austrian Academy of Sciences (OeAW)

April 30, 2024
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Our computational ressources are limited!

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

We need fast and faithful surrogates.

⇒ Normalizing Flows are both.

latent
space

data
space

Bijector
L = − log p
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Flow-based generative models for particle calorimeter simulation
1 Learn how total energy is distributed across layers: p1(E1, E2, . . . , En|Einc)

2 Learn normalized shower:

▶ direct: learn
p2(Î1:n|E1:n, Einc)

▶ autoregressive: learn first layer p2(Î1|E1, Einc)

and step from (n − 1) to n: p3(În|În−1, n, En, En−1, Einc)

Dataset Method generation time AUC on voxels ↓per shower [ms] ↓

1: γ
GEANT4 O(104) 0.499(2)

d CALOFLOW IAF 0.79 ± 0.01 0.761(2)
368-dim d CALOINN 0.51 ± 0.03 0.626(4)

1: π+
GEANT4 O(104) 0.609(4)

d CALOFLOW IAF 1.00 ± 0.02 0.884(2)
533-dim d CALOINN 0.44 ± 0.01 0.784(2)

2: e−
GEANT4 O(105) 0.500(2)

a iCALOFLOW IAF 13.2 ± 0.5 0.819(4)
6480-dim d CALOINN 1.18 ± 0.03 0.743(2)

3: e− GEANT4 O(105) 0.498(2)
40500-dim a iCALOFLOW IAF 16.7 ± 0.5 0.891(3)

CaloChallenge
datasets

Classify
Showers

vs.
GEANT4
as metric.
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